堆是一个二叉树,其中每个父节点的值都小于或等于其所有子节点的值。整个堆的最小元素总是位于二叉树的根节点。python的heapq模块提供了对堆的支持。
堆数据结构最重要的特征是heap[0]永远是最小的元素
heapq.heappush(heap,item)
注:heap为定义堆,item增加的元素
>>> import heapq
>>> h = []
>>> heapq.heappush(h,2)
>>> h
[2]
heapq.heapify(list)
注:将列表转换为堆
>>> list = [1,2,3,5,1,5,8,9,6]
>>> heapq.heapify(list)
>>> list
[1, 1, 3, 5, 2, 5, 8, 9, 6]
heapq.heappop(heap)
注:删除最小值,因为堆的特征是heap[0]永远是最小的元素,所以一般都是删除第一个元素。
>>> list
[1, 1, 3, 5, 2, 5, 8, 9, 6]
>>> heapq.heappop(list)
1
>>> list
[1, 2, 3, 5, 6, 5, 8, 9]
heapq.heapreplace(heap.item)
注:删除最小元素值,添加新的元素值
>>> list
[1, 2, 3, 5, 6, 5, 8, 9]
>>> heapq.heapreplace(list,99)
1
>>> list
[2, 5, 3, 9, 6, 5, 8, 99]
heapq.heapreplace(heap,item)
注:首先判断添加元素值与堆的第一个元素值对比,如果大,则删除第一个元素,然后添加新的元素值,购置不更改堆
>>> list
[2, 5, 3, 9, 6, 5, 8, 99]
>>> heapq.heappushpop(list,6)
2
>>> list
[3, 5, 5, 9, 6, 6, 8, 99]
>>> heapq.heappushpop(list,1)
1
>>> list
[3, 5, 5, 9, 6, 6, 8, 99]
heapq.merge(…)
注:将多个堆合并
>>> list
[3, 5, 5, 9, 6, 6, 8, 99]
>>> h
[1000]
>>> for i in heapq.merge(h,list):
... print(i,end=" ")
...
3 5 5 9 6 6 8 99 1000
heapq.nlargest(n,heap)
注:查询堆中的最大元素,n表示查询元素个数
>>> list
[3, 5, 5, 9, 6, 6, 8, 99]
>>> heapq.nlargest(3,list)
[99, 9, 8]
>>>
heapq.nsmallest(n,heap)
注:查询堆中的最小元素,n表示查询元素的个数
>>> list
[3, 5, 5, 9, 6, 6, 8, 99]
>>> heapq.nsmallest(3,list)
[3, 5, 5]