卷积网络做Dropout的新利器——DropBlock

谷歌团队最近提出了一种用在卷积网络上的新的dropout方法——DropBlock,我觉得很有必要向大家介绍一下。

简单的说,Dropout强迫神经网络不单独依赖某一个特征,从而提高网络的泛化能力,但使用卷积网络处理的数据(不仅仅是图像数据)通常具有空间上的关联性,因而对于位于某一空间区域的对象,随机丢弃难以drop掉该对象的信息,Dropout的目的也就不能充分达到。DropBlock则drop掉一整块区域(由超参数控制区域的大小)的激活值,强迫网络使用其他区域的特征。论文还指出,在训练过程中线性的逐步降低keep_prob的值可以获得更好的结果。

更详细的信息请参看论文DropBlock: A regularization method for convolutional networks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值