谷歌团队最近提出了一种用在卷积网络上的新的dropout方法——DropBlock,我觉得很有必要向大家介绍一下。
简单的说,Dropout强迫神经网络不单独依赖某一个特征,从而提高网络的泛化能力,但使用卷积网络处理的数据(不仅仅是图像数据)通常具有空间上的关联性,因而对于位于某一空间区域的对象,随机丢弃难以drop掉该对象的信息,Dropout的目的也就不能充分达到。DropBlock则drop掉一整块区域(由超参数控制区域的大小)的激活值,强迫网络使用其他区域的特征。论文还指出,在训练过程中线性的逐步降低keep_prob的值可以获得更好的结果。
更详细的信息请参看论文DropBlock: A regularization method for convolutional networks