AI生成模型之人脸变换

本文探讨了使用深度学习技术,如变分自编码器(VAE)和生成对抗网络(GAN),进行漫威英雄角色的性别转换实验。作者分享了两个主要思路:一是通过操作VAE的属性向量,二是修改GAN的损失函数加入性别变化目标。此外,还讨论了使用人脸识别网络替代像素L2距离作为损失函数的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

18年6月的时候,在时光网看到一篇文章《漫威英雄男变女》,觉得很有意思,用深度学习做的话也不难。当时就有两个思路:

  • 一是使用VAE,操作属性向量
  • 二是直接在损失里面加一个性别变化的目标

另外,不使用像素的L2距离做损失,而是使用一个人脸识别网络。

很快我就发现,这些想法别人早都已经有过了,尽管如此,把这些想法实现出来对我自己仍旧很有意义,其中还包含一些独特的细节。本系列的正文主要就是介绍这些工作:

除此之外,还有几篇外传,作为参考或者延伸包含在系列中:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值