VAE的哲学,GAN的哲学

深度生成模型

深度生成模型希望通过学习真实数据的分布,来产生和真实数据分布一致的样本。本文对两种生成模型——VAE和GAN做定性的介绍。

对于生成模型,我们不仅希望产生的样本分布和真实数据分布尽量重合,还希望对生成的样本属性能有所控制,比如如果生成模型能从一个具有语义的潜空间映射到数据空间,那么我们就可以通过操控潜空间变量来生成具有特定属性的样本。

VAE

VAE的目标是学得从输入数据到一个服从标准正态分布的潜空间向量的映射,同时学得从这个潜空间向量到输入空间的映射。这样从正态分布的潜空间采样,就能生成输入空间的样本。在VAE中,重参数化的采样过程,在均值的方差附近产生潜空间向量,再解码生成样本,重构损失将使这些均值附近的值都能解码成接近的样本。KL loss则使潜空间分布接近标准正态分布,这样一方面有一定的方差,从而保证上述采样的有效,另一方面使各个输入样本在潜空间的均值都接近0,这样不同输入映射到潜空间不会相距太远。总的结果就是潜空间向量彼此接近,又仍然独特,允许平滑差值,和在潜空间采样生成到输入空间。

由于VAE能学到性质比较好的潜空间,所以它可以在潜空间向量上进行算术运算来操纵生成样本的属性,类似于NLP中词向量的概念。参见AI生成模型之人脸变换(一) VAE

GAN

和VAE不同的是,GAN试图直接学习从潜空间到数据空间的映射。GAN假设有一个从正态分布或者均匀分布的潜空间到数据空间的映射,潜空间向量直接由分布中采样得到,那么关键就是根据输入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值