http://acm.nyist.net/JudgeOnline/problem.php?pid=334
法雷数列(一)
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
对任意给定的一个自然数n,将分母小于等于n的不可约的真分数按升序排列,并且在第一个分数之前加上0/1,在最后一个分数之后加上1/1,这个序列称为n级法雷数列,以Fn表示。如F5为:0/1,1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5,1/1.
现在给出n让你求其n级法雷数列。
-
输入
-
有多组测试数据组数小于1003,
每组测试数据有一个整数n(0<n<=100).
输出
- 输出n级法雷数列。 样例输入
-
1 5
样例输出
-
0/1,1/1 0/1,1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,1/1
-
有多组测试数据组数小于1003,
法雷数列的构造可采用2分法,即如果 a/b, c/d (a/b<c/d)是一个n级法雷数列中的两个元素,且b+d<=n, 则可以在a/b, c/d 中间插入一个分数 (a+b)/(c+d)。下面以5级法雷数列为例,给出详细的过程。
step1: 准备两个数 0/1, 1/1 作为整个法雷数列的第一个元素和最后一个元素
0/1, 1/1
step2: 在两个数中间插入1个数1/2, 变为
0/1, 1/2, 1/1
step3: 在每对相邻两个数中间插入1个数,变为
0/1, 1/3, 1/2, 2/3, 1/1
step4: 在每对相邻两个数中间插入1个数,变为
0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1
step5: 0/1 和 1/4 之间 和3/4和 1/1 仍然可插入1个数,使得插入的数分母不大于5
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1
#include<iostream>
using namespace std;
long n;
void Falei(int a, int b, int c, int d) {
if (b + d <= n) {
Falei(a, b, c + a, d + b); //往左边插
cout << (a + c) << "/" << (b + d) << ",";
Falei(a + c, b + d, c, d); //往右边插
}
}
int main() {
while (cin >> n) {
cout << "0/1,";
Falei(0, 1, 1, 1);
cout << "1/1" << endl;
}
}