为什么α得取值是0或者1/2?

首先分析公式:

h ( n ) = 1 M ∑ k = 0 M − 1 H ( k + α ) e j 2 π ( k + α ) n / M ; n ∈ [ 0 , M − 1 ] h(n) = \frac{1}{M} \sum_{k=0}^{M-1} H(k + \alpha) e^{j 2 \pi (k + \alpha) n / M}; \quad n \in [0, M - 1] h(n)=M1k=0M1H(k+α)ej2π(k+α)n/M;n[0,M1]

这里的公式表示 时域冲激响应 h ( n ) h(n) h(n),它是通过对 频域采样点 H ( k + α ) H(k + \alpha) H(k+α) 进行 离散傅里叶反变换(IDFT) 得到的。我们逐项分析这个公式的含义。

1. 公式中每个部分的含义

  • H ( k + α ) H(k + \alpha) H(k+α):这是频域中第 k + α k + \alpha k+α 个采样点的响应值。每一个 H ( k + α ) H(k + \alpha) H(k+α) 代表滤波器在频率点 k + α k + \alpha k+α 处的“权重”或“增益”,这个值由我们在频域设计的采样点定义。

  • e j 2 π ( k + α ) n / M e^{j 2 \pi (k + \alpha) n / M} ej2π(k+α)n/M:这是复指数项,通过这个项将每个频域采样点 H ( k + α ) H(k + \alpha) H(k+α) 转换到时域中。这个项的作用是将不同频率的采样点整合在时域上,以形成滤波器的冲激响应 h ( n ) h(n) h(n)

  • 1 M \frac{1}{M} M1:这是一个归一化系数,它确保最终的冲激响应 h ( n ) h(n) h(n) 的幅值适中。

2. 为什么有 α = 0 \alpha = 0 α=0 α = 1 2 \alpha = \frac{1}{2} α=21

在设计滤波器时,为了让冲激响应 h ( n ) h(n) h(n) 是实值,频域采样点 必须成对称分布。这个对称要求使得频域采样点可以有两种选择方式:

  1. α = 0 \alpha = 0 α=0:从 ω = 0 \omega = 0 ω=0 开始,这种情况下,采样点将集中在低频区域。这更适合设计低通滤波器,因为从低频开始可以准确定义低频响应。

  2. α = 1 2 \alpha = \frac{1}{2} α=21:采样点从 ω = π M \omega = \frac{\pi}{M} ω=Mπ 开始,往高频延伸。这种采样点分布更适合设计带通或带阻滤波器,因为可以更加均衡地覆盖中高频区域。

2.1. 为什么 α = 0 \alpha = 0 α=0 时从 ω = 0 \omega = 0 ω=0 开始?

当我们选择 α = 0 \alpha = 0 α=0 时,公式中的 H ( k + α ) H(k + \alpha) H(k+α) 就变成了 H ( k ) H(k) H(k),那么第一个频率采样点对应的频率是:

ω = 2 π M × ( k + α ) = 2 π M × k \omega = \frac{2 \pi}{M} \times (k + \alpha) = \frac{2 \pi}{M} \times k ω=M2π×(k+α)=M2π×k

k = 0 k = 0 k=0 时,频率 ω = 0 \omega = 0 ω=0,也就是说,频率采样从 ω = 0 \omega = 0 ω=0 开始

2.2. 为什么 α = 1 2 \alpha = \frac{1}{2} α=21 时从 ω = π M \omega = \frac{\pi}{M} ω=Mπ 开始?

当选择 α = 1 2 \alpha = \frac{1}{2} α=21 时,公式中的 H ( k + α ) H(k + \alpha) H(k+α) 就变成了 H ( k + 1 2 ) H\left(k + \frac{1}{2}\right) H(k+21),那么采样点对应的频率为:

ω = 2 π M × ( k + 1 2 ) = 2 π M × k + π M \omega = \frac{2 \pi}{M} \times \left(k + \frac{1}{2}\right) = \frac{2 \pi}{M} \times k + \frac{\pi}{M} ω=M2π×(k+21)=M2π×k+Mπ

k = 0 k = 0 k=0 时,频率变成 ω = π M \omega = \frac{\pi}{M} ω=Mπ,因此采样点从 ω = π M \omega = \frac{\pi}{M} ω=Mπ 开始

3. 为什么 α = 0 \alpha = 0 α=0 α = 1 2 \alpha = \frac{1}{2} α=21 是同时取的?

在公式中, α \alpha α 的取值不是在同一个公式中切换,而是指在滤波器设计时,可以选择使用其中一个值来确定频率响应的分布。通常设计中不会同时使用两种 α \alpha α,而是根据需求选择合适的一个来控制频率响应的形状。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值