频率采样方法

  1. 频率采样方法
    窗设计方法在通带和阻带中定义了一个连续频率 ω \omega ω 的频率响应。对于复杂的传递函数,可以采用一种采样频率的方法。在这里,不是通过连续的 ω \omega ω 来指定滤波器,而是只在等间距的特定采样点上指定滤波器。由于设计的滤波器的 h ( n ) h(n) h(n) 系数应为实数值,因此在 z 变换中,零点应成复共轭对出现。因此,对于 M 阶滤波器,有两种可能的采样集,第一采样点位于 ω 0 = 0 \omega_0 = 0 ω0=0 ω 0 = π / M \omega_0 = \pi / M ω0=π/M 处。

详细解释:

频率采样法是一种设计离散滤波器的技术,它主要基于在频域的特定采样点上指定滤波器的频率响应,而不是在整个频率轴上的每一个连续频率值上。这种方法在设计复杂滤波器时尤其有用,因为它可以通过较少的采样点有效地描述滤波器的特性。接下来将逐步解析各个重要部分:

  1. 窗设计方法与频率采样法的区别
    窗设计方法是通过直接对滤波器的传递函数设置理想的通带和阻带频率响应,在整个连续频率范围上定义滤波器的特性。也就是说,窗设计方法会在通带和阻带的所有频率上持续地指定滤波器的响应。然而,在频率采样方法中,我们可以通过只在一些离散频率点上定义滤波器的响应来近似得到一个理想滤波器。这些采样点通常是等间隔分布的。

  2. 复杂传递函数的采样频率方法
    对于一些更复杂的滤波器或传递函数,在整个频率范围内逐一指定频率响应可能过于复杂且耗时。因此,可以在离散采样点上定义滤波器的响应,这样更易于处理和实现。这样设计的滤波器只在离散的频率点上定义了其响应,节省了计算资源并简化了设计流程。

  3. 滤波器的实数系数
    滤波器的系数 h ( n ) h(n) h(n) 需要是实数系数。为了确保这一点,在滤波器的 z 变换表示中,滤波器的零点必须成复共轭对出现。这样可以保证滤波器的频率响应在整个频域上是对称的,从而使得滤波器的系数可以是实数。复共轭对的零点意味着,在 z 平面上,一个零点如果位于某个位置 z 0 z_0 z0,那么它的共轭零点 z ˉ 0 \bar{z}_0 zˉ0 也会出现在对称位置。

  4. M 阶滤波器的两种采样集
    对于一个 M 阶的滤波器,我们有两种可以选择的采样点集合:

    • 第一种选择是让采样的起始点从 ω 0 = 0 \omega_0 = 0 ω0=0 开始。
    • 第二种选择是从 ω 0 = π / M \omega_0 = \pi / M ω0=π/M 开始。

    通过在这两种起点之间选择一个,我们可以得到不同的采样点排列,从而可以在滤波器设计中得到稍有不同的频率响应。

在这种频率采样方法中,通过对频域的特定点进行采样,能够设计出满足特定需求的滤波器,并保持其响应的对称性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值