思路如下:
一个长度n的队列可以看成一个n - 1的队列再追加的1个小孩,这个小孩只可能是:
a.男孩,任何n - 1的合法队列追加1个男孩必然是合法的,情况数为f[n - 1];
b.女孩,在前n - 1的以女孩为末尾的队列后追加1位女孩也是合法的,我们可以转化为n - 2的队列中追加2位女孩;
一种情况是在n - 2的合法队列中追加2位女孩,情况数为f[n - 2];
但我们注意到本题的难点,可能前n - 2位以女孩为末尾的不合法队列(即单纯以1位女孩结尾),也可以追加2位女孩成为合法队列,而这种n - 2不合法队列必然是由n - 4合法队列+1男孩+1女孩的结构,即情况数为f[n - 4]。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <climits>
#include <cstdlib>
using namespace std;
#define MAXN 300
class Number
{
private:
static int _t[MAXN];
int* num;
int len;
Number(int l, int* t)
{
len = l;
num = new int[len];
memcpy(num, t, sizeof(int) * len);
}
public:
Number(unsigned int n)
{
if (n == 0)
{
num = new int[2];
len = 2;
num[1] = 0;
num[0] = -1;
return;
}
int t = MAXN;
while (n > 0)
{
_t[--t] = n%10000;
n /= 10000;
}
len = MAXN - t;
num = new int[len];
memcpy(num, _t+t, sizeof(int) * len);
}
Number()
{
num = new int[2];
len = 2;
num[1] = 0;
num[0] = -1;
}
Number operator=(const Number& rhs)
{
delete[] num;
len = rhs.len;
num = new int[len];
memcpy(num, rhs.num, sizeof(int) * len);
return *this;
}
Number(const Number& rhs)
{
len = rhs.len;
num = new int[len];
memcpy(num, rhs.num, sizeof(int) * len);
}
~Number()
{
delete[] num;
}
friend ostream& operator<< (ostream& os, const Number& rhs)
{
printf("%d", rhs.num[0]);
for (int i = 1; i < rhs.len; ++i)
{
printf("%04d", rhs.num[i]);
}
return os;
}
Number operator* (const unsigned int n) const
{
if (n > INT_MAX/10000) exit(EXIT_FAILURE);
int t = MAXN, l = len, carry = 0;
while (l > 0)
{
carry += num[--l] * n;
_t[--t] = carry % 10000;
carry /= 10000;
}
while (carry)
{
_t[--t] = carry % 10000;
carry /= 10000;
}
return Number(MAXN-t, _t+t);
}
Number operator+ (const Number& rhs)
{
int t = MAXN, l1 = len, l2 = rhs.len, carry = 0;
while (l1 > 0 && l2 > 0)
{
carry += rhs.num[--l2] + num[--l1];
_t[--t] = carry % 10000;
carry /= 10000;
}
while (l2 > 0)
{
carry += rhs.num[--l2];
_t[--t] = carry % 10000;
carry /= 10000;
}
while (l1 > 0)
{
carry += num[--l1];
_t[--t] = carry % 10000;
carry /= 10000;
}
if (carry) _t[--t] = carry;
return Number(MAXN-t, _t+t);
}
friend Number operator+ (const unsigned int n, const Number& rhs)
{
return Number(n) + rhs;
}
friend Number operator* (const unsigned int n, const Number& rhs)
{
return rhs.operator* (n);
}
};
int Number::_t[MAXN];
Number res[1009];
int main()
{
int n;
res[1] = 1, res[2] = 2, res[3] = 4, res[4] = 7;
for (n = 5; n <= 1000; ++n)
res[n] = res[n-1] + res[n-2] + res[n-4];
while (cin >> n)
{
cout << res[n] << endl;
}
return 0;
}