在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
解题思路:
先判断数组gas的总值和数组cost的总值哪个大,如果总gas - 总cost < 0,那么就不存在这样的起点,因为无论从哪个点开始走汽油都不够用。如果
总gas - 总cost > 0,那么就存在起始点可以绕一圈走完,题目说解是唯一的,那么总gas - 总cost > 0必定存在一个起始点。利用贪心的思想,通过画图的方式理解,找从索引为0的起始点开始计算剩余油量的最低点,让最低点符合临界条件,则该点为起始点,这里的索引是从0开始,第4站是索引3的位置的点,所以+1。
代码实现:
class Solution:
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
surplus = 0
minValue = float('inf')
index = -1
for i in range(len(gas)):
surplus += gas[i] - cost[i]
if surplus < minValue:
minValue = surplus
index = i
if surplus < 0:
return -1
return (index + 1) % len(gas)
解法2:
class Solution:
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
# 可以绕环路行驶一周,必须满足两个条件
# 第一:总获取油量必须大于总消耗油量
if sum(cost) > sum(gas):
return -1
# 第二:车能总车站i开到车站i+1
cur = 0 # 记录当前车获取的油量和消耗的油量的累计和
ans = 0 # 车的出发位置
for i in range(len(gas)):
cur += gas[i] - cost[i]
# 当cur为负数时,表明当前位置i到不了i的下一个位置(i+1)
# 更新车的出发位置,更新为i的下一个位置(i+1),i之前的位置都不用再计算查看了
# 有数学证明,可参考官方题解的证明
if cur < 0:
ans = i + 1
cur = 0
return ans
参考文献:
https://leetcode-cn.com/problems/gas-station/solution/shi-yong-tu-de-si-xiang-fen-xi-gai-wen-ti-by-cyayc/