221. 最大正方形
原始题目链接:https://leetcode-cn.com/problems/maximal-square/
在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。
示例 1:
输入:matrix = [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“1”],[“1”,“0”,“0”,“1”,“0”]]
输出:4
示例 2:
输入:matrix = [[“0”,“1”],[“1”,“0”]]
输出:1
示例 3:
输入:matrix = [[“0”]]
输出:0
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j] 为 ‘0’ 或 ‘1’
解题思路:
动态规划解题,定义状态,用dp(i,j) 表示以 (i,j) 为右下角,且只包含 11
的正方形的边长最大值。如果我们能计算出所有dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 1的正方形的边长最大值,其平方即为最大正方形的面积。初始化dp数组为matrix大小的二维数组,值都为0,这样包含了一种边界条件,即i或j为0的时候且matrix[i][j]=0,dp[i][j]=0,计算dp数组中的dp[i][j]的值是在matrix[i][j]== '1’的基础上来计算,动态转移方程dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1。具体实现看代码。
代码实现:
class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
# 判断边界:非二维数组
if len(matrix) == 0 or len(matrix[0]) == 0:
return 0
row, col = len(matrix), len(matrix[0])
# 定义状态dp[i][j]:以坐标(i, j)为右下角且只包含元素1的最大正方形的边长
# 初始化dp数组全0,并且边界条件中,dp[i][j]为0并且i或j为0,则最大边长就是0
dp = [[0] * col for _ in range(row)]
# 最大边长
maxSide = 0
# 遍历dp中的每个坐标元素,计算状态转移方程
for i in range(row):
for j in range(col):
# 判断当前值是否是1,注意是字符1
if matrix[i][j] == '1':
if i == 0 or j == 0:
dp[i][j] = 1
else:
# dp[i][j]是它的左上角、左边、上边的最大正方形边长的最小值+1
dp[i][j] = min(dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]) + 1
# 更新最大值
maxSide = max(maxSide, dp[i][j])
return maxSide * maxSide
参考文献:
https://leetcode-cn.com/problems/maximal-square/solution/zui-da-zheng-fang-xing-by-leetcode-solution/