72. 编辑距离
原始题目链接:https://leetcode.cn/problems/edit-distance/
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成
解题思路:
定义dp[i][j]的含义为:word1的前i个字符和word2的前j个字符的编辑距离。就是word1的前i个字符,变成word2的前j个字符,最少需要这么多步。如果其中一个字符串是空串,那么编辑距离是另一个字符串的长度;两个串都不空时,dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+int(word1[i]!=word2[j])):
例如,word1 = “abcde”, word2 =“fgh”,我们现在算这俩字符串的编辑距离,就是找从word1,最少多少步,能变成word2?那就有三种方式:知道"abcd"变成"fgh"多少步(假设X步),那么从"abcde"到"fgh"就是"abcde"->“abcd”->“fgh”。(一次删除,加X步,总共X+1步)
知道"abcde"变成“fg”多少步(假设Y步),那么从"abcde"到"fgh"就是"abcde"->“fg”->“fgh”。(先Y步,再一次添加,加X步,总共Y+1步)
知道"abcd"变成“fg”多少步(假设Z步),那么从"abcde"到"fgh"就是"abcde"->“fge”->“fgh”(替换)。
代码实现:
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
if m * n == 0:
return m + n
# 定义dp[i][j]:word1到i的字符 变换成 word2[j] 的编辑距离
dp = [[0] * (n + 1) for _ in range(m + 1)]
# 初始化dp:word1为空或者word2为空,那么转换的最少步数
# 就是word1或word2的长度
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[0][j] = j
# 根据dp[i - 1][j] dp[i][j - 1] dp[i - 1][j - 1]
# 计算dp[i][j]的值
for i in range(1, m + 1):
for j in range(1, n + 1):
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + int(word1[i - 1] != word2[j - 1]))
return dp[m][n]
参考文献:
https://leetcode.cn/problems/edit-distance/solution/bian-ji-ju-chi-by-leetcode-solution/