Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
解答:
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
const int maxn = 210;
const int INF = 210*110;
int w[maxn][maxn];
int d[maxn];
int vis[maxn];
int n,m;
int s,t;
void Dijkstra()
{
for(int i = 0; i < n; i++) d[i] = w[s][i];
d[s] = 0;
memset(vis,0,sizeof(vis));
for(int i = 1; i <= n; i++)
{
int x,m = INF;
for(int y = 0; y < n; y++) if(!vis[y] && d[y] <= m) m = d[x=y];
vis[x] = 1;
for(int y = 0; y < n; y++)
d[y] = min(d[y], d[x]+w[x][y]);
}
}
int main()
{
while(scanf("%d%d", &n,&m) != EOF)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
w[i][j] = (i == j ? 0 : INF);
}
for(int i = 0; i < m; i++)
{
int a,b,x;
scanf("%d%d%d", &a,&b,&x);
w[a][b] = min(w[a][b], x);
w[b][a] = w[a][b];
}
scanf("%d%d", &s,&t);
Dijkstra();
if(d[t] != INF) printf("%d\n", d[t]); //注意输出
else printf("-1\n");
}
return 0;
}