机器学习
SalaFeng是一条咸鱼
要有趣 要努力
展开
-
《Deep Self-Taught Learning for Weakly Supervised Object Localization》
本文提出依靠检测器自身不断改进训练样本质量,不断增强检测器性能的一种全新方法,破解弱监督目标检测问题中训练样本质量低的瓶颈。Weakly Supervised Objection Localization——弱监督目标定位 也就是说我们训练的图像只有针对图像的【注释】,没有包含物体的矩形框,入论文中的图片所示: 可以很显然的看出,这种无矩形框的弱监督学习要比有矩形框的学习 难很多。 本原创 2017-09-30 18:31:49 · 608 阅读 · 0 评论 -
【秋招复习——深度学习】ResNet、DenseNet
随着cnn的发展,尤其是VGG网络提出以后,大家发现网络层数是网络的一个关键因素,似乎越深的网络效 果越好。 但是随着网络层数的增加,也出现了梯度消失或者发散。从而导致训练难以收敛。 随着normalized initialization && intermediate normalization layers的提出解决了这个问题。 但是于此同时,随着网络深度的...原创 2018-08-10 20:35:56 · 916 阅读 · 0 评论 -
【秋招复习——深度学习】GoogLeNet
Inception v1\v2\v3\v4创新点总结: Inception v1 (GoogleNet) 2014 Inception v2 (Batch Norm) 2015 Inception v3 (Factorization) 2015 Inception v4 (ResNet) 2016 一、GoogLeNet Incepetion V1为了解决...原创 2018-08-10 19:42:49 · 326 阅读 · 0 评论 -
RCNN学习笔记(5)-You Only Look Once: Unified, Real-Time Object Detection
本文参考博客如下: yolo代码分析 You Only Look Once: Unified, Real-Time Object Detection 晓雷机器学习笔记-图解YOLO 视觉随笔-YOLO详解-赵丽丽 R-CNN 利用selective search 提出的 region proposals 结合卷积神经网络,通过R-CNN、SPP-net、Fast R-CNN原创 2017-10-09 19:59:23 · 561 阅读 · 0 评论 -
RCNN学习笔记(0)-RCNN->SPPnet->Fast RCNN->Faster RCNN
发展流程: RCNN->SPPnet->Fast-RCNN->Faster RCNN->YoLo RCNN: RCNN可以看做是 RegionProposal+CNN这一框架的开山之作,在imgenet/voc/mscoco上基本上所有top的方法都是这个框架。RCNN的主要缺点是重复计算。 SPPnet:MSRA的kaiming组的SPPnet 对RCNN重复计算的缺点,做出了相应原创 2017-10-02 21:14:17 · 369 阅读 · 0 评论 -
RCNN学习笔记(4)-Faster R-CNN
Faster R-CNNEnd-to-End 首先要理解一下,什么是端对端。端对端的概念很简单,就是输入的是原始数据,输出的是最终的结果。且网络从头到尾是可导的 为什么会有端对端这个概念,在图像处理问题上,原先的输入端并不是直接的数据,因为原始数据像素点太多,数据维度过高,会产生维度灾难,所以在输入之前,先将原始数据提取特征值,进行降维。 特征提取的好坏异常关键原创 2017-10-08 19:31:07 · 620 阅读 · 0 评论 -
RCNN学习笔记(3)-Fast-RCNN
Faster-RCNNreference link: 晓雷机器学习笔记 xyy19920105博客——目标检测——从RCNN到Faster RCNN 串烧 RCNN、SPP-net的流程 上图分别为RCNN和SPP-net CNN提取特征的流程,在此之后都将通过SVM分类 以及 Bbox回归 所以可以看出,RCNN和SPP-net在训练pipeline是隔离的:提取proposal->cnn原创 2017-10-07 20:53:41 · 313 阅读 · 0 评论 -
RCNN学习笔记(2)-SPPnet
reference link:https://zhuanlan.zhihu.com/p/24774302 reference link:http://blog.csdn.net/u011534057/article/details/51219959SPPnet原创 2017-10-06 21:46:01 · 369 阅读 · 0 评论 -
RCNN学习笔记(1)-RCNN-Rich feature hierarchies for accurate object detection and semantic segmentation论文
RCNN-Rich feature hierarchies for accurate object detectionreference link1:http://blog.csdn.net/wopawn/article/details/52133338 reference link2: http://blog.csdn.net/shenxiaolu1984/article/details/51066975原创 2017-10-03 23:49:19 · 336 阅读 · 0 评论 -
【秋招复习——深度学习】MobileNet
原先模型小型化工作的焦点,放在模型尺度上。卷积核分解,使用1×N 和N×1的卷积核代替N×N的卷积核使用bottleneck 结构,以SqueezeNet为代表以低精度浮点数保存冗余卷积核剪枝以及哈夫曼编码depthwiseseparable convolutions的本质是冗余信息更少的稀疏化表达。在此基础上给出了高效模型设计的两个选择:宽度因子(width multi...原创 2018-08-10 20:52:36 · 536 阅读 · 0 评论