[日常杂言]推荐一个在线使用LaTeX格式的网站overleaf

毕业在即,毕业论文是头等大事。开题报告和中期报告用word折腾过后,便打定注意要用LaTeX。本来想好在本机装环境,经历多少艰难险阻已不愿再提,于是最终选择网站overleaf(网址:https://www.overleaf.com) 下面,介绍如何在overleaf中使用中科院的研究生毕业论文...

2019-02-21 15:17:47

阅读数 397

评论数 1

[转]场景文字识别数据集

转自:https://blog.csdn.net/u011489887/article/details/79804498  1.中文数据集 CTW data(Chinese Text in the Wild) 清华大学与腾讯共同推出了中文自然文本数据集(Chinese Text in the...

2018-12-29 15:18:52

阅读数 380

评论数 1

[日常杂言]关于目标检测的思考

日常杂言主要是一些非正式的思考,仅记录。 今天去face++面试,面试官一开始问我,faster rcnn中的rpn,为什么要设置多个尺寸的anchor? 我说,是根据边框回归的原理,只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性...

2018-10-30 16:08:06

阅读数 154

评论数 5

[cv基础二]图像特征点提取

写在前面:图像的点特征是许多计算机视觉算法的基础。在运动目标跟踪,物体识别,图像配准,全景图像拼接,三维重建等方面,都使用特征点来代表图像的内容。角点是其中一类重要的点特征。下面就什么是角点及常见的角点检测算法进行介绍。 一,角点的定义 角点(corner points): 1)局部窗口沿各...

2018-10-23 15:50:32

阅读数 229

评论数 0

[cv基础一] 图像底层特征:轮廓与边缘

写在前面:用深度学习的方法调了一波参数,改了一波网络结构,回过头,最想做的事情,当然是好好补一补计算机视觉的基础,弥补一下对传统计算机视觉理解的薄弱部分。所以,接下来,开始补习计算机视觉的基础。供自己以后复习,看客仅供参考。 图像底层特征提取是计算机视觉的基本步骤。那么,接下来,就从what,w...

2018-10-19 17:27:01

阅读数 427

评论数 0

LRUCache详解

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put. get(key) - Get t...

2018-08-26 16:27:20

阅读数 89

评论数 0

链表环问题总结

1.Given a linked list, determine if it has a cycle in it. Follow up: Can you solve it without using extra space? 判断一个链表是否有环 思路:通过定义一个fast指针初始指向头节点...

2018-08-26 15:23:33

阅读数 73

评论数 0

旋转数组问题总结

1.Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e.,  [0,1,2,4,5,6,7] might become  [4,5,6,7,0,1,...

2018-08-26 12:27:40

阅读数 153

评论数 0

传统提取图片特征的方式:颜色直方图、方向梯度直方图、词袋

对图片做线性分类,最直观的做法是,将图像中的原始像素之间传入线性分类器。由于多模态等原因,直接传入分类器效果不太好。所以,在深度神经网络得到大规模应用之前,通常使用两步走策略: 1.拿到图片,计算图片的各种特征代表。 2.将不同的特征向量融合到一起,得到图像的特征表述。然后,将图像的特征表述传...

2018-08-05 12:20:42

阅读数 1821

评论数 1

[深度学习] 梯度消失与梯度爆炸、Loss为Nan的原因

现象 如何确定是否出现梯度爆炸? 在训练过程中出现梯度爆炸会伴随一些细微的信号,如: (1)模型无法从训练数据中获得更新; (2)模型不稳定,导致更新过程中的损失出现显著变化; (3)训练过程中,模型的损失变为Nan。   梯度消失与梯度爆炸原因 首先,来看神经网络更新梯度的原理,...

2018-08-04 14:35:19

阅读数 7380

评论数 0

[深度学习] 激活函数、损失函数、优化函数的作用

激活函数、损失函数、优化函数都分别是什么?有什么作用? 下面,就以激活函数、损失函数、优化函数在神经网络中的作用,浅析一二。 利用神经网络进行分类、检测、分割等任务的关键,就是利用反向传播算法,求解神经网络,找到正确的W,b。 反向传播算法的过程如下: 也就是说: 激活函数:将神经网...

2018-08-03 18:17:58

阅读数 4033

评论数 0

[深度学习]神经网络卷积方式:卷积、转置卷积与空洞卷积

感受野 定义:在卷积神经网络中,感受野的定义是,卷积神经网络中每一层输入的特征图(feature map)上的像素点在原始图像上的映射大小。 对于pooling操作,第一个作用是降低feature map的尺寸,减少需要训练的参数;第二,通过减小feature map的尺寸,将之前的4个像素点...

2018-08-01 20:13:25

阅读数 1787

评论数 0

回溯

       在回溯中,递归调用的一个重要特征是要返回。回溯法是暴力解法的一个主要实现手段。在回溯法中通过剪枝,不用到达所有的叶子节点,从而提升算法的效率。 1.17. Letter Combinations of a Phone Number Given a string containin...

2018-07-30 22:19:59

阅读数 138

评论数 0

[深度学习]语义分割、分类定位与目标检测

语义分割 定义:输入图像,并对图像中的每个像素做分类。 以第一幅图像为例,图像中是一只可爱的猫在草地上散步。输出结果应该是,对于每个像素,确定它属于猫、草地或者天空,或者背景亦或其他分类。语义分割并不区分同类目标。也就是说,不会区分第二幅图的这两头牛,这是语义分割的缺点。 语义分割的...

2018-07-30 11:13:28

阅读数 4121

评论数 0

[深度学习]循环神经网络:RNN,LSTM,GRU,Attention机制,沿时间的截断反向传导算法

RNN(Recurrent Neural Network,循环神经网络)   每个RNN都有一个循环核心单元。它把x作为输入,将其传入RNN。RNN有一个内部隐藏态(internal hidden state)。这个隐藏态会在RNN每次读取新的输入时更新,然后隐藏态会将结果返回至模型。 ...

2018-07-29 22:39:17

阅读数 2042

评论数 0

[深度学习]卷积神经网络:卷积、池化、常见分类网络

卷积 全连接层:将卷积层所有的像素展开,例如得到一个3072维的向量,然后在向量上进行操作。 卷积层:可以保全空间结构,不是展开成一个长的向量。 卷积操作:将卷积核从图像(或者上一层的feature map)的左上方的边角处开始,遍历卷积核覆盖的所有像素点。在每一个位置,我们都进行点积运算,...

2018-07-29 22:27:09

阅读数 1382

评论数 1

[深度学习]数据预处理(归一化方法)、Batch Normalization、超参数搜索 与 神经网络权重的初始化

归一化方法 1.线性比例变换法  y = x / max(x) 2.极差变换法 y = (x - min(x)) / (max(x) - min(x)) 缺点:当有新数据加入时,会导致min(x) 与 max(x) 的变化,需要重新定义。 3.0均值标准化 y = (x - mean...

2018-07-23 21:54:40

阅读数 1463

评论数 0

[深度学习]模型泛化性能的度量标准

过拟合与欠拟合 1.概念 过拟合:当模型过度地学习训练样本中的细节与噪音,把训练样本自身的一些特点当做了所有潜在样本都会具有的一般性质,这样就会导致泛化性能的下降,以至于模型在新的数据上表现很差。 欠拟合:对训练样本的一般性质尚未学好。 2.原因 出现过拟合的原因:训练集与测试集的特征分...

2018-07-23 21:16:40

阅读数 624

评论数 0

字符串

  1.请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。 思路:类似数组的双索引。 class Solution { public: void replaceSpace(char...

2018-07-21 16:22:12

阅读数 64

评论数 0

使用opencv从图片中裁剪出任意形状的四边形

写在前面:之前是先得到任意四边形的最小外接矩形,再使用opencv进行裁剪,但是这样会引入噪声。所以在此记录下,如何直接裁剪原任意四边形区域。 思路: 1.计算要裁剪区域四边形的相对水平方向的旋转角度; 2.将原图旋转该角度,以使得要裁剪的区域旋转到水平方向; 3.将要裁剪区域的坐标做相应...

2018-07-18 20:42:38

阅读数 3862

评论数 1

提示
确定要删除当前文章?
取消 删除