[Python]利用高德地图api实现经纬度与地址的批量转换

我们都知道,可以使用高德地图api实现经纬度与地址的转换。那么,当我们有很多个地址与经纬度,需要批量转换的时候,应该怎么办呢?

在这里,选用高德Web服务的API,其中的地址/逆地址编码,可以实现经纬度与地址的转换。

高德API地址:

地理/逆地理编码:http://lbs.amap.com/api/webservice/guide/api/georegeo

坐标转换:http://lbs.amap.com/api/webservice/guide/api/convert


1.申请key

2.坐标转换

坐标转换是一类简单的HTTP接口,能够将用户输入的非高德坐标(GPS坐标、mapbar坐标、baidu坐标)转换成高德坐标。

def transform(location):
	parameters = {'coordsys':'gps','locations': location, 'key': '7ec25a9c6716bb26f0d25e9fdfa012b8'}
        base = 'http://restapi.amap.com/v3/assistant/coordinate/convert'
        response = requests.get(base, parameters)
        answer = response.json()
        return answer['locations']

2.地理/逆地理编码

我这里是将经纬度转换为地址,所以选用的是逆地理编码的接口。

def geocode(location):
        parameters = {'location': location, 'key': '7ec25a9c6716bb26f0d25e9fdfa012b8'}
        base = 'http://restapi.amap.com/v3/geocode/regeo'
        response = requests.get(base, parameters)
        answer = response.json()
        return answer['regeocode']['addressComponent']['district'].encode('gbk','replace'),answer['regeocode']['formatted_address'].encode('gbk','replace')

3.从文件中读取

需要批量获取的话,一般是从文件中读取数据,读取代码如下:

def parse():
	datas = []
	totalListData = pd.read_csv('locs.csv')
	totalListDict = totalListData.to_dict('index')
	for i in range(0, len(totalListDict)):
		datas.append(str(totalListDict[i]['centroidx']) + ',' + str(totalListDict[i]['centroidy']))
	return datas


4.完整代码

对于批量获取,我一开始也走了很多弯路。一开始选用javascript接口,但是js接口的函数是异步返回,所以可能第10行的结果跑到第15行去了,一直没有很好的解决,后来才选用web接口。最后,将完整代码贴于此,仅供参考。

#!/usr/bin/env
#-*- coding:utf-8 -*-
'''
利用高德地图api实现经纬度与地址的批量转换
'''
import requests
import pandas as pd
import time
import sys
reload(sys)
sys.setdefaultencoding("utf-8")

def parse():
	datas = []
	totalListData = pd.read_csv('locs.csv')
	totalListDict = totalListData.to_dict('index')
	for i in range(0, len(totalListDict)):
		datas.append(str(totalListDict[i]['centroidx']) + ',' + str(totalListDict[i]['centroidy']))
	return datas
		
def transform(location):
	parameters = {'coordsys':'gps','locations': location, 'key': '7ec25a9c6716bb26f0d25e9fdfa012b8'}
        base = 'http://restapi.amap.com/v3/assistant/coordinate/convert'
        response = requests.get(base, parameters)
        answer = response.json()
        return answer['locations']

def geocode(location):
        parameters = {'location': location, 'key': '7ec25a9c6716bb26f0d25e9fdfa012b8'}
        base = 'http://restapi.amap.com/v3/geocode/regeo'
        response = requests.get(base, parameters)
        answer = response.json()
        return answer['regeocode']['addressComponent']['district'].encode('gbk','replace'),answer['regeocode']['formatted_address'].encode('gbk','replace')
		
if __name__=='__main__':
	i = 0
	count = 0
	df = pd.DataFrame(columns=['location','detail'])
	#locations = parse(item)
	locations = parse()
	for location in locations:
		dist, detail = geocode(transform(location))
		df.loc[i] = [dist, detail]
		i = i + 1
	df.to_csv('locdetail.csv', index =False)
	

注意事项:

在测试的时候,一个key差不多可以下载2000-3000条数据,一个账号可以申请4个key。这是我自己的使用情况。所以,测试的时候,不用测试过多,直接开始正式爬数据才是正道。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013250416/article/details/71178156
个人分类: python
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭