题意:若干高楼, 一个人站中间,问他看到蓝天的最大角度,或者说是左边看到的和右边看到的大楼的仰角和的补角。
思路:
三条黑线代表高楼,分别表示1号、2号、3号高楼,红点和黄点是人所在的地点。
当人在红点时,显然左边所有楼中3号楼仰角最大,但是到黄点的时候,2号楼仰角最大,这时就可以删掉3号楼,因为黄点右边的点也不会被3号楼挡住;考虑如果1号楼之前有更高的楼层,黄点的仰角可以更大的话,那么1、2、3号楼都会被删掉。
所以这个问题就转化成了一个求凸包的问题,两边分别求凸包就可以得到询问点左右最大的仰角。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
struct Point {
double x, h;
int id;
void input() {
scanf("%lf %lf", &x, &h);
}
Point(){}
Point(int a, int b): x(a), h(b){}
bool operator < (const Point &i) const {
return x < i.x;
}
};
Point point[200020], stk[200020];
double ans[100020];
long long gradjudge(Point a, Point b, Point c) {
long long t1 = (a.x - b.x) * (c.h - b.h);
long long t2 = (a.h - b.h) * (c.x - b.x);
return t1 - t2;
}
const double PI = acos(-1.0);
main() {
int t, n, nq;
scanf("%d", &t);
for(int cas = 1; cas <= t; cas++) {
memset(ans, 0, sizeof ans);
scanf("%d", &n);
for(int i = 1; i <= n; i++) point[i].input();
scanf("%d", &nq);
for(int i = 1; i <= nq; i++) scanf("%lf", &point[i + n].x), point[i + n].h = 0, point[i + n].id = i;
n = n + nq;
sort(point + 1, point + n + 1);
int k = 0;
for(int i = 1; i <= n; i++) {
while(k > 1 && gradjudge(stk[k - 2], stk[k - 1], point[i]) <= 0) k--;
if(point[i].h == 0) {
ans[point[i].id] += atan((point[i].x - stk[k - 1].x) / stk[k - 1].h);
// printf("%f %f %f\n", stk[k - 1].h, point[i].x - stk[k - 1].x, ans[point[i].id]);
}
stk[k++] = point[i];
}
k = 0;
for(int i = n; i >= 1; i--) {
while(k > 1 && gradjudge(stk[k - 2], stk[k - 1], point[i]) >= 0) k--;
if(point[i].h == 0) {
ans[point[i].id] += atan((-point[i].x + stk[k - 1].x) / (stk[k - 1].h));
// printf("%f %f %f\n", stk[k - 1].h, -point[i].x + stk[k - 1].x, ans[point[i].id]);
}
stk[k++] = point[i];
}
printf("Case #%d:\n", cas);
for(int i = 1; i <= nq; i++){
printf("%.10f\n", ans[i] / PI * 180.0);
}
}
}