Codeforces Round #305 (Div. 1) B. Mike and Feet(单调栈)

B. Mike and Feet
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Mike is the president of country What-The-Fatherland. There are n bears living in this country besides Mike. All of them are standing in a line and they are numbered from 1 to n from left to right. i-th bear is exactly ai feet high.

A group of bears is a non-empty contiguous segment of the line. The size of a group is the number of bears in that group. The strength of a group is the minimum height of the bear in that group.

Mike is a curious to know for each x such that 1 ≤ x ≤ n the maximum strength among all groups of size x.

Input

The first line of input contains integer n (1 ≤ n ≤ 2 × 105), the number of bears.

The second line contains n integers separated by space, a1, a2, ..., an (1 ≤ ai ≤ 109), heights of bears.

Output

Print n integers in one line. For each x from 1 to n, print the maximum strength among all groups of size x.

Sample test(s)
input
10
1 2 3 4 5 4 3 2 1 6
output
6 4 4 3 3 2 2 1 1 1 



官方题解,学习单调栈了

For each i, find the largest j that aj < ai and show it by li (if there is no such j, then li = 0).

Also, find the smallest j that aj < ai and show it by ri (if there is no such j, then ri = n + 1).

This can be done in O(n) with a stack. Pseudo code of the first part (second part is also like that) :

stack s // initially empty
for i = 1 to n
     while s is not empty and a[s.top()] >= a[i]
          do s.pop()
     if s is empty
          then l[i] = 0
     otherwise
          l[i] = s.top()
     s.push(i)

Consider that you are asked to print n integers, ans1, ans2, ..., ansn. Obviously, ans1 ≥ ans2 ≥ ... ≥ ansn.

For each i, we know that ai can be minimum element in groups of size 1, 2, ..., ri - li - 1.

Se we need a data structure for us to do this:

We have array ans1, ans2, ..., ansn and all its elements are initially equal to 0. Also, n queries. Each query gives x, val and want us to perform ans1 = max(ans1, val), ans2 = max(ans2, val), ..., ansx = max(ansx, val). We want the final array.

This can be done in O(n) with a maximum partial sum (keeping maximum instead of sum), read here for more information about partial sum.

Time complexity: .

C++ Code by PrinceOfPersia

C++ Code by Haghani

Java Code by Zlobober



#include <cstdio>
#include <iostream>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
typedef long long ll;
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
const int inf = 0x3f3f3f3f;
const int maxn = 2e5 + 10;
int a[maxn],l[maxn],r[maxn],res[maxn];
int main(int argc, char const *argv[])
{
	int n;
	while(scanf("%d",&n)==1) {
		for(int i = 1; i <= n; i++) scanf("%d",a+i);
		stack<int>s;
		for(int i = 1; i <= n; i++) {
			res[i] = 0;
			while(!s.empty()&&a[s.top()] >= a[i]) s.pop();
			if(s.empty()) l[i] = 0;
			else l[i] = s.top();
			s.push(i);
		}
		while(!s.empty())s.pop();
		for(int i = n; i >= 1; i--) {
			while(!s.empty()&&a[s.top()] >= a[i]) s.pop();
			if(s.empty()) r[i] = n + 1;
			else r[i] = s.top();
			s.push(i);
		}
		for(int i = 1; i <= n; i++) {
			int x = r[i] - l[i] -1;
			res[x] = max(res[x],a[i]);
		}
		for(int i = n-1; i > 0; i--) res[i] = max(res[i+1],res[i]);
		for(int i = 1; i <= n; i++)printf("%d%c", res[i]," \n"[i==n]);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值