二叉树的中序遍历
- 要点:
1.中序遍历左子树
2.访问根节点
3.中序遍历右子树 实例: 如图:中序遍历结果:DBEAFC
中序遍历的时间复杂度为:O(n)。
如果一棵二叉排序树的节点值是数值,中序遍历的结果为升序排列的数组。可以利用该性质检测一棵树是否为二叉排序数。
已知前序遍历和后序遍历,不能确定唯一的中序遍历
计算中序遍历拥有比较简单直观的投影法,如图
3.typedef struct TreeNode { int data; struct TreeNode *left; struct TreeNode *right; struct TreeNode *parent; } TreeNode; void middle_order(TreeNode *Node) { if(Node != NULL) { middle_order(Node->left); printf("%d ", Node->data); middle_order(Node->right); } }
4.非递归实现:
根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:对于任一结点P,
1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;
2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;
3)直到P为NULL并且栈为空则遍历结束
void inOrder2(BinTree *root) //非递归中序遍历 { stack<BinTree*> s; BinTree *p=root; while(p!=NULL||!s.empty()) { while(p!=NULL) { s.push(p); p=p->lchild; } if(!s.empty()) { p=s.top(); cout<<p->data<<" "; s.pop(); p=p->rchild; } } }