在运行Caffe自带的两个例子的时候,我们的数据都来自互联网,是直接下载的二进制文件。
但我们大多数情况下使用的是原始的图片数据(如.jpg .png等),接下来研究如何将原始的图片数据转化为caffe可以运行的数据。
1、准备图片数据
2、生成图片清单
# /usr/bin/env sh
DATA=D:/Caffe/Caffe_BVLC/examples/images
echo "Create train.txt..."
exec 2>>log.txt
rm -rf $DATA/train.txt
find $DATA -name *cat.jpg | cut -d '/' -f6 | sed "s/$/ 1/">>$DATA/train.txt
find $DATA -name *bike.jpg | cut -d '/' -f6 | sed "s/$/ 2/">>$DATA/tmp.txt
cat $DATA/tmp.txt>>$DATA/train.txt
rm -rf $DATA/tmp.txt
echo "Done.."
这里对脚本做下大致的解释
3、生成lmdb格式的文件
FLAGS
-gray: 是否以灰度图的方式打开图片。程序调用opencv库中的imread()函数来打开图片,默认为false
-shuffle: 是否随机打乱图片顺序。默认为false
-backend:需要转换成的db文件格式,可选为leveldb或lmdb,默认为lmdb
-resize_width/resize_height: 改变图片的大小。在运行中,要求所有图片的尺寸一致,因此需要改变图片大小。 程
序调用opencv库的resize()函数来对图片放大缩小,默认为0,不改变
-check_size: 检查所有的数据是否有相同的尺寸。默认为false,不检查
-encoded: 是否将原图片编码放入最终的数据中,默认为false
-encode_type: 与前一个参数对应,将图片编码为哪一个格式:‘png','jpg'......
ROOTFOLDER
图片存放的路径
LISTFILE
文件清单
DB_NAME
最终生成的lmdb或leveldb所存放的路径
具体操作
在example/images文件夹下创建一个create_lmdb.sh 脚本,脚本内容如下:
DATA=D:/Caffe/Caffe_BVLC/examples/images
rm -rf $DATA/img_train_lmdb
D:/Caffe/Caffe_BVLC/Build/x64/Release/convert_imageset.exe --shuffle \
--resize_height=256 --resize_width=256 \
$DATA $DATA/train.txt $DATA/img_train_lmdb
执行该脚本,会在该目录下生成一个新的文件,如下图所示:
至此,将原始的图片数据转化为caffe能够执行的lmdb数据实验 完成。
如有疑问,欢迎一起探讨!