大模型微调论文综合版

大模型微调其实一直是很常见并且非常重要的环节,无论是自研通用大模型或者垂直大模型,尤其是垂直大模型,微调更是必不可少的环节,本文总结了大模型微调的9篇论文,并且抽取出来了里面的重点,在阅读每篇论文的时候请着重看一下加粗或者加斜杠的部分,这些部分在工业界使用过程中其实可以参考。

论文主要围绕自然语言处理中语言模型的指令微调多任务学习、数据集构建等方面展开研究,总结了一下重点:

重点1:指令微调与模型性能

  • 性能提升显著:通过对各种预训练语言模型进行指令微调,如 T0、Flan-T5、OPT-IML 等模型,在不同的自然语言处理任务中,模型的性能得到了显著提升。这些模型在零样本和少样本学习设置下,能够更好地理解和遵循指令,生成更符合用户期望的回答。
  • 泛化能力增强指令微调使得模型能够更好地泛化到未见过的任务,具有较强的跨任务泛化能力。模型可以根据不同的任务指令,灵活调整其输出,适应各种自然语言处理任务的需求
  • 优化因素明确:研究确定了一些影响指令微调效果的重要因素,如任务混合率、基准比例、任务和类别规模、预训练数据使用、添加推理和对话数据集等。合理调整这些因素可以进一步提高模型的性能和泛化能力。

重点2:数据集构建与作用

  • 数据集多样化:构建了多样化的自然语言处理数据集,如 Super - NaturalInstructions、UNIFIEDSKG、PromptSource 等。这些数据集涵盖了多种自然语言处理任务,包括文本分类、文本生成、问答、推理等,为模型的训练和评估提供了丰富的数据资源。
  • 数据质量重要性数据集的质量对模型的性能有重要影响。高质量的数据集可以提供更准确的任务描述和示例,帮助模型更好地学习和理解自然语言,从而提高模型的性能和泛化能力
  • 自动数据生成潜力:一些研究探索了自动数据生成的方法,如利用 ChatGPT 自动生成自然语言指令数据集。自动数据生成可以减少人工标注的成本和工作量,同时提高数据集的多样性和创造性。

重点3:模型架构与训练方法

  • 模型架构创新有论文提出了一些新的模型架构,如 UL2 模型,将多种预训练任务统一到一个框架中,提高了模型的通用性和适应性。这些模型架构在不同的任务和数据集上表现出了较好的性能。
  • 训练方法改进:采用了多种训练方法,如多任务学习、指令微调、前缀调优等,提高了模型的性能和泛化能力。这些训练方法可以让模型学习到不同任务之间的共性和差异,从而更好地处理各种自然语言处理任务。
  • 参数高效微调:研究还探索了参数高效的微调方法,如 LoRA 等,减少了模型的训练时间和计算成本,同时提高了模型的性能。

重点4:实际应用与局限性

  • 实际应用价值:这些研究成果在自然语言处理的实际应用中具有重要价值,如智能客服、智能写作、智能问答等。通过提高模型的性能和泛化能力,可以为用户提供更好的服务和体验。
  • 局限性仍存在
  • 数据偏差问题数据集可能存在一定的偏差,例如某些任务的样本数量较少,某些任务的难度分布不均匀等,可能会影响模型的性能和泛化能力
  • 模型复杂度挑战一些模型的结构和参数较多,训练和推理过程较为复杂,需要较高的计算资源和技术水平。
  • 泛化能力限制:尽管模型在实验中表现出了较好的泛化能力,但在实际应用中,模型的泛化能力仍可能受到多种因素的影响,如数据质量、任务复杂性、语言多样性等。

具体论文解析如下:

论文1: OPT - IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization

论文地址:

https://arxiv.org/pdf/2212.12017​arxiv.org/pdf/2212.12017

研究背景

      • 指令微调已被证明能显著提高大预训练语言模型的零样本和少样本性能,但对指令微调过程中不同决策的性能权衡了解有限。
      • 现有大规模元数据集如 Super - NaturalInstructions、FLAN 和 PromptSource 等不断涌现,为研究提供了更多数据资源,但如何有效利用这些数据集进行指令微调仍有待探索。

研究问题

      • 如何刻画指令微调决策对下游任务性能的影响,特别是在模型和基准规模扩大的情况下。
      • 确定指令微调中的最佳实践,包括任务采样策略、使用演示进行微调、训练使用的数据集等。

研究方法

      • 构建数据集:整合 8 个数据集构建 OPT - IML 基准,包含 2000 个 NLP 任务,分为多个任务类别,并对任务进行筛选和整理,创建了训练、验证和测试集。
      • 指令微调:使用 OPT 模型进行指令微调,采用下一个单词预测目标,对训练序列进行打包和文档注意力掩码处理,微调超参数。
      • 实验设置:通过改变任务混合率、基准比例、任务或类别规模、预训练数据使用、添加推理和对话数据集以及元训练等因素,研究其对指令微调的影响。
      • 作者解析:其实很明显这个里面还是通过改变数据的分布,以及NLP任务的规模。

实验结果

      • 性能提升:在多个基准测试中,OPT - IML 模型在零样本和少样本设置下均优于原始 OPT 模型,在不同任务和输入格式上表现出较强的泛化能力。
      • 因素影响
        • 任务混合率在一定范围内变化对性能影响较小,超过一定阈值后性能变化不明显。
        • 不同基准比例对模型性能有影响,综合多个基准的比例设置能提高性能。
        • 增加任务或类别数量通常能提高模型在完全保留任务类别上的性能,但在部分监督和完全监督任务上的表现有所不同。
        • 预训练数据、推理数据集和对话数据集的添加对模型性能有一定的提升作用,但也存在一些权衡。
        • 元训练在一定程度上提高了模型的性能,但也可能导致性能下降。

研究结论

      • 重要发现:刻画了指令微调决策对下游任务性能的影响,确定了一些重要的因素,如任务混合率、基准比例、任务和类别规模等,对指令微调的实践具有指导意义。
      • 模型优势:OPT - IML 模型在多个基准测试中表现出色,能够有效地泛化到不同的任务和输入格式,具有较强的通用性和适应性。
      • 进一步研究方向:未来可以进一步研究模型在更广泛任务和数据集上的性能,探索更有效的指令微调方法和策略。

实际应用性

      • 语言模型训练:为开发更强大的语言模型提供了一种有效的方法,通过大规模的指令微调,可以提高模型在各种自然语言处理任务中的性能。
      • 任务泛化:有助于模型更好地应对新的、未见过的任务,提高模型的泛化能力,为实际应用中的任务迁移和扩展提供了支持。

局限性

      • 变量交互:研究中单独考察了各个因素对指令微调的影响,但这些因素之间可能存在相互作用,未来需要进一步研究它们的交互效应
      • 模型规模效应ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值