Minimum Subtree

Given a binary tree, find the subtree with minimum sum. Return the root of the subtree.

Example

Example 1:

Input:
{1,-5,2,1,2,-4,-5}
Output:1
Explanation:
The tree is look like this:
     1
   /   \
 -5     2
 / \   /  \
1   2 -4  -5 
The sum of whole tree is minimum, so return the root.

Example 2:

Input:
{1}
Output:1
Explanation:
The tree is look like this:
   1
There is one and only one subtree in the tree. So we return 1.

思路:divide conquer,递归函数表达的意义是:返回当前node的 minTreeNode,minSum,以及包含当前value的sum

拿到左边右边的minSum之后,跟ResultType.minSum进行比较,左边小更新两个值,右边小更新两个值,sum这个结果不变继续往上传;注意minSum default 设置成Integer.MAX_VALUE,这样就避免了判断leaf节点的问题,否则会有NPE;

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */

public class Solution {
    
    class ResultType {
        TreeNode minRoot;
        int minSum;
        int sum;
        public ResultType (TreeNode minRoot, int minSum, int sum) {
            this.minRoot = minRoot;
            this.minSum = minSum;
            this.sum = sum;
        }
    }
    /**
     * @param root: the root of binary tree
     * @return: the root of the minimum subtree
     */
    public TreeNode findSubtree(TreeNode root) {
       return divideConquer(root).minRoot;
    }
    
    public ResultType divideConquer(TreeNode root) {
        if(root == null){
            return new ResultType(null, Integer.MAX_VALUE, 0);
        }
        
        ResultType leftRes = divideConquer(root.left);
        ResultType rightRes = divideConquer(root.right);
        
        int totalSum = root.val + leftRes.sum + rightRes.sum;
        ResultType resultType = new ResultType(root, totalSum, totalSum);
        
        if(leftRes.minSum <= resultType.minSum) {
            resultType.minRoot = leftRes.minRoot;
            resultType.minSum = leftRes.minSum;
        }
        
        if(rightRes.minSum <= resultType.minSum) {
            resultType.minRoot = rightRes.minRoot;
            resultType.minSum = rightRes.minSum;
        }

        return resultType;
    }
}

思路2:用traverse的思想,helper function递归函数的物理意义是:包含当前node value的总sum;但是每次traverse之后,更新global sum和node即可;取最小的。

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */

public class Solution {
    /**
     * @param root: the root of binary tree
     * @return: the root of the minimum subtree
     */
     int globalSum = Integer.MAX_VALUE;
     TreeNode globalNode = null;
     
    public TreeNode findSubtree(TreeNode root) {
        helper(root);
        return globalNode;
    }
    
    public int helper(TreeNode root) {
        if(root == null) {
            return 0;
        }
        
        int curSum = helper(root.left) + helper(root.right) + root.val;
        if(curSum <= globalSum) {
            globalNode = root;
            globalSum = curSum;
        }
        
        return curSum;
    }
}

 

Here is the implementation of the is_bst function in Python: ``` def is_bst(t): def is_bst_helper(t, min_val, max_val): if t.is_leaf(): return True elif len(t.branches) == 1: return False else: left = t.branches[0] right = t.branches[1] if left.label > t.label or right.label < t.label: return False if min_val is not None and left.label <= min_val: return False if max_val is not None and right.label >= max_val: return False return is_bst_helper(left, min_val, t.label) and is_bst_helper(right, t.label, max_val) return is_bst_helper(t, None, None) ``` The is_bst function takes a Tree object as input and returns True if the tree is a valid binary search tree and False otherwise. The function uses a helper function, is_bst_helper, to recursively check if each node in the tree satisfies the conditions of a binary search tree. The helper function takes three arguments: the current node, the minimum value that the entries in the left subtree can take, and the maximum value that the entries in the right subtree can take. If the current node is a leaf, the function returns True. If the current node has only one child or the entries in the left or right subtree violate the binary search tree property, the function returns False. Otherwise, the function recursively calls itself on the left and right subtrees, updating the minimum and maximum values as it goes. Finally, the is_bst function calls the helper function on the root of the tree, with minimum and maximum values of None (since the root has no parent node), and returns the result of the helper function.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值