Maximum Average Subarray II

Given an array with positive and negative numbers, find the maximum average subarray which length should be greater or equal to given length k.

Example

Example 1:

Input:
[1,12,-5,-6,50,3]
3
Output:
15.667
Explanation:
 (-6 + 50 + 3) / 3 = 15.667

Example 2:

Input:
[5]
1
Output:
5.000

Notice

It's guaranteed that the size of the array is greater or equal to k.

思路:直接求,不要计算,那么我们发现题目要求最大值,并且average的长度> k,那么我们先不管长度,我们先问,subarray(i,j)能够求的最大值会是多少;

(ai + .. + aj) / (j-i+1) >= avg,这个是否成立,那么转换为(ai - avg) + .. ( aj - avg) >=0 

那么问题转换为B[i] 组数里面,有没有B[j] - B[i] , j - i + 1 >= k 也就是 i <= j - k + 1; 能否找到一段区间和 >= 0, 并且j - i + 1 >= k;

那么就是一个解空间的搜索问题了,上面的B数组可以写成了一个canAverage的函数,那么就是一个区间搜索问题,把求最大的average, 变换成,我给定一个average,能够找到 [i, j] 区间>= 0; 能找到,start =  mid;,因为是求最大的average,一直往上找。

搜索的区间是[minAi, maxAi]

class Solution {
    public double findMaxAverage(int[] nums, int k) {
        if(nums == null || nums.length == 0) {
            return 0.0;
        }
        int min = nums[0];
        int max = nums[0];
        for(int i = 1; i < nums.length; i++) {
            min = Math.min(min, nums[i]);
            max = Math.max(max, nums[i]);
        }
        double start = min; double end = max;
        double eps = 1e-5;
        while(start + eps < end) {
            double mid = start + (end - start) / 2;
            if(canfind(mid, nums, k)) {
                start = mid;
            } else {
                end = mid;
            }
        }
        if(canfind(end, nums, k)) {
            return end;
        }
        return start;
    }
    
    private boolean canfind(double avg, int[] nums, int k) {
        double rightsum = 0.0;
        double leftsum = 0.0;
        double minleftsum = 0.0;
        
        // 先算[0,k-2];
        for(int j = 0; j < k - 1; j++) {
            rightsum += nums[j] - avg;
        }
        
        // 从第k-1开始算;也就是满足第k个了;
        for(int j = k - 1; j < nums.length; j++) {
            rightsum += nums[j] - avg;
            if(rightsum - minleftsum >= 0) {
                return true;
            }
            // j - i + 1 >= k 推出来: i <= j - k + 1;
            leftsum += nums[j - k + 1] - avg;
            minleftsum = Math.min(minleftsum, leftsum);
        }
        return false;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值