Maximum Binary Tree

Given an integer array with no duplicates. A maximum tree building on this array is defined as follow:

  1. The root is the maximum number in the array.
  2. The left subtree is the maximum tree constructed from left part subarray divided by the maximum number.
  3. The right subtree is the maximum tree constructed from right part subarray divided by the maximum number.

 

Construct the maximum tree by the given array and output the root node of this tree.

Example 1:

Input: [3,2,1,6,0,5]
Output: return the tree root node representing the following tree:

      6
    /   \
   3     5
    \    / 
     2  0   
       \
        1

思路:找到最大值index,dfs即可;

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        if(nums == null || nums.length == 0) {
            return null;
        }
        return buildTree(nums, 0, nums.length - 1);
    }
    
    private TreeNode buildTree(int[] nums, int start, int end) {
        if(start > end) {
            return null;
        }
        if(start == end) {
            return new TreeNode(nums[start]);
        }
        int index = start;
        int max = nums[start];
        for(int i = start; i <= end; i++) {
            if(nums[i] > max) {
                max = nums[i];
                index = i;
            }
        }
        TreeNode root = new TreeNode(nums[index]);
        root.left = buildTree(nums, start, index - 1);
        root.right = buildTree(nums, index + 1, end);
        return root;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值