Tree Diameter

Given an undirected tree, return its diameter: the number of edges in a longest path in that tree.

The tree is given as an array of edges where edges[i] = [u, v] is a bidirectional edge between nodes u and v.  Each node has labels in the set {0, 1, ..., edges.length}.

Example 1:

Input: edges = [[0,1],[0,2]]
Output: 2
Explanation: 
A longest path of the tree is the path 1 - 0 - 2.

Example 2:

Input: edges = [[0,1],[1,2],[2,3],[1,4],[4,5]]
Output: 4
Explanation: 
A longest path of the tree is the path 3 - 2 - 1 - 4 - 5.

Constraints:

  • 0 <= edges.length < 10^4
  • edges[i][0] != edges[i][1]
  • 0 <= edges[i][j] <= edges.length
  • The given edges form an undirected tree.

思路:这题跟  Diameter of Binary Tree 很类似,不同的是,从两个边变成了多个边,那么通过一个node的最大的path,就是通过这个node的最大的len和第二大的len的和,dfs返回的还是通过这个node的最大的length;注意,防止死循环,用parent来表示上一个parent,如果上一个parent == neighbor跳过;

class Solution {
    private int maxlen = 0;
    public int treeDiameter(int[][] edges) {
        if(edges == null || edges.length == 0 || edges[0].length == 0) {
            return 0;
        }
        HashMap<Integer, List<Integer>> graph = new HashMap<>();
        int n = edges.length;
        for(int i = 0; i < edges.length; i++) {
            int u = edges[i][0];
            int v = edges[i][1];
            graph.putIfAbsent(u, new ArrayList<Integer>());
            graph.putIfAbsent(v, new ArrayList<Integer>());
            graph.get(u).add(v);
            graph.get(v).add(u);
        }
        
        dfs(graph, 0, -1);

        return maxlen;
    }
    
    private int dfs(HashMap<Integer, List<Integer>> graph,
                   int node, int parent) {
        int max1 = 0;
        int max2 = 0;
        for(Integer neighbor: graph.get(node)) {
            if(neighbor == parent) {
                continue;
            }
            int depth = dfs(graph, neighbor, node) + 1;
            if(depth > max1) {
                max2 = max1;
                max1 = depth;
            } else if(depth > max2) {
                max2 = depth;
            }
        }
        maxlen = Math.max(maxlen, max1 + max2);
        return max1;
    }
}

 

<think>好的,我现在需要帮助用户了解CF树的相关信息和使用方法。首先,我应该回忆一下CF树的基本概念。CF树是BIRCH聚类算法中的核心数据结构,用于高效处理大规模数据。用户可能已经知道聚类的基本概念,但需要更深入的技术细节。 接下来,我需要确认CF树的组成部分。每个节点由聚类特征(CF)组成,而CF包含三个部分:数据点的数量(N)、线性和(LS)和平方和(SS)。这些统计量帮助快速计算聚类的基本信息,比如质心和半径。需要解释清楚这些术语,并用数学表达式展示,比如LS和SS的公式。 然后,结构方面,CF树是一个平衡树,每个节点有多个子节点,不超过阈值B;叶子节点则不超过阈值L。分裂过程类似于B树,当插入新数据导致节点超过阈值时,会进行分裂。这里可能需要举例说明分裂的过程,比如如何选择最近的子节点,如何合并或分裂节点。 关于参数,用户可能需要知道如何调整B和L来平衡精度和效率。较小的阈值会导致树更深,可能影响效率;较大的阈值可能降低聚类质量。这部分需要结合实际应用场景的建议,比如处理大规模数据时的调参策略。 使用场景方面,CF树适合流式数据或内存有限的情况,因为它可以增量更新,不需要重新计算全部数据。但也要指出其局限性,比如对高维数据效果可能下降,或者球形簇的假设。这能帮助用户判断是否适合他们的需求。 最后,生成相关问题时,需要覆盖结构、参数调优、优缺点、应用场景以及与其他算法的对比。这些问题能引导用户进一步探索CF树的不同方面。同时,确保引用正确的文献,比如用户提供的引用[1]中的聚类特征定义,以及引用[3]中的聚类综述,以增强回答的可信度。 检查是否有遗漏的部分,比如是否解释了CF的三个分量如何计算质心和半径,是否有示例说明插入过程,是否提到了BIRCH算法的步骤。确保数学公式使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。同时,回答结构要清晰,分点说明,帮助用户逐步理解。</think>### CF树(聚类特征树)详解 CF树(Clustering Feature Tree)是层次聚类算法BIRCH的核心数据结构,专为处理大规模数据设计。其核心思想是通过紧凑的聚类特征(CF)逐步构建树形结构,实现高效的数据压缩和聚类分析[^1]。 #### 1. 聚类特征(CF)定义 每个CF包含三个关键统计量: $$ CF = (n, LS, SS) $$ - $n$:子簇中数据点数量 - $LS = \sum_{i=1}^n x_i$(线性和) - $SS = \sum_{i=1}^n x_i^2$(平方和) 通过这些统计量可快速计算: - 质心:$\frac{LS}{n}$ - 簇半径:$\sqrt{\frac{SS}{n} - (\frac{LS}{n})^2}$ #### 2. CF树结构特性 - **平衡树结构**:类似B+树,包含根节点、内部节点和叶节点 - **节点容量限制**: - 内部节点最大分支数:$B$(分支因子) - 叶节点最大CF数:$L$(叶容量) - 簇直径阈值:$T$(控制簇紧密程度) #### 3. 构建过程示例 当插入新数据点$x$时: 1. 从根节点向下寻找最接近的CF路径 2. 到达叶节点后: - 若合并后簇直径$\leq T$:吸收到现有CF - 否则:创建新CF条目 3. 若节点溢出则分裂,分裂策略类似B树 ```python # 伪代码示例 class CFNode: def insert(self, point): if self.is_leaf: candidate = find_closest_cf(point) if merged_diameter(candidate, point) <= T: candidate.update(point) else: create_new_cf(point) if len(CFs) > L: self.split() else: route_to_child(point) ``` #### 4. 关键参数调优 | 参数 | 影响 | 建议值 | |------|------|-------| | $B$ | 树宽度 | 50-200 | | $L$ | 叶节点容量 | 20-100 | | $T$ | 簇紧密度 | 根据数据分布调整 | #### 5. 应用场景 - **流式数据处理**:支持增量更新[^1] - **内存受限环境**:典型内存消耗仅为原始数据的1/10 - **数据预处理**:可生成初步聚类作为其他算法的输入 #### 6. 优缺点分析 ✓ 优点: - 时间复杂度$O(n)$ - 可处理任意形状数据 - 自动处理噪声点 ✗ 局限性: - 对高维数据效果下降 - 依赖数据输入顺序 - 需要合理设置阈值参数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值