Given a binary tree, you need to find the length of Longest Consecutive Path in Binary Tree.
Especially, this path can be either increasing or decreasing. For example, [1,2,3,4] and [4,3,2,1] are both considered valid, but the path [1,2,4,3] is not valid. On the other hand, the path can be in the child-Parent-child order, where not necessarily be parent-child order.
Example 1:
Input: 1 / \ 2 3 Output: 2 Explanation: The longest consecutive path is [1, 2] or [2, 1].
Example 2:
Input: 2 / \ 1 3 Output: 3 Explanation: The longest consecutive path is [1, 2, 3] or [3, 2, 1].
Note: All the values of tree nodes are in the range of [-1e7, 1e7].
思路:这题跟 Binary Tree Longest Consecutive Sequence 不一样的地方在于,他可以连起来,左边和右边都可以连起来;那么我们就要想到 divide and conquer的解法,就是返回以当前node为起点的increase和decrease的长度,然后往上返回的信息就是一个自定义的结构,这个结构包含,increase和decrease还有下面返回上来的longestLength;最后当前的longestLength为curInc + curDec + 1,和左右两边的longestLength取最大值;
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public class Node {
public int inc;
public int dec;
public int longest;
public Node(int inc, int dec, int longest) {
this.inc = inc;
this.dec = dec;
this.longest = longest;
}
}
public int longestConsecutive(TreeNode root) {
if(root == null) {
return 0;
}
Node res = dfs(root);
return res.longest;
}
private Node dfs(TreeNode root) {
if(root == null) {
return new Node(0, 0, 0);
}
Node leftnode = dfs(root.left);
Node rightnode = dfs(root.right);
int inc = 0;
int dec = 0;
int longest = 0;
if(root.left != null) {
if(root.val + 1 == root.left.val) {
inc = Math.max(inc, leftnode.inc + 1);
}
if(root.val - 1 == root.left.val) {
dec = Math.max(dec, leftnode.dec + 1);
}
}
if(root.right != null) {
if(root.val + 1 == root.right.val) {
inc = Math.max(inc, rightnode.inc + 1);
}
if(root.val - 1 == root.right.val) {
dec = Math.max(dec, rightnode.dec + 1);
}
}
longest = Math.max(inc + 1 + dec, Math.max(leftnode.longest, rightnode.longest));
return new Node(inc, dec, longest);
}
}