There is a one-dimensional garden on the x-axis. The garden starts at the point 0
and ends at the point n
. (i.e The length of the garden is n
).
There are n + 1
taps located at points [0, 1, ..., n]
in the garden.
Given an integer n
and an integer array ranges
of length n + 1
where ranges[i]
(0-indexed) means the i-th
tap can water the area [i - ranges[i], i + ranges[i]]
if it was open.
Return the minimum number of taps that should be open to water the whole garden, If the garden cannot be watered return -1.
Example 1:
Input: n = 5, ranges = [3,4,1,1,0,0] Output: 1 Explanation: The tap at point 0 can cover the interval [-3,3] The tap at point 1 can cover the interval [-3,5] The tap at point 2 can cover the interval [1,3] The tap at point 3 can cover the interval [2,4] The tap at point 4 can cover the interval [4,4] The tap at point 5 can cover the interval [5,5] Opening Only the second tap will water the whole garden [0,5]
思路:这题很类似Jump Game II; 把能够jump的距离,转换成arr, 距离全部存在left开始的array里面(不是中心),问题就转换为 Jump Game II; 代码一模一样;
class Solution {
public int minTaps(int n, int[] ranges) {
int[] arr = new int[n + 1];
for(int i = 0; i < ranges.length; i++) {
if(ranges[i] == 0) continue;
int left = Math.max(0, i - ranges[i]);
arr[left] = Math.max(arr[left], i + ranges[i]);
}
int end = 0, farCanReach = 0, step = 0;
for(int i = 0; i < arr.length && end < n; end = farCanReach) {
step++;
while(i < arr.length && i <= end) {
farCanReach = Math.max(farCanReach, arr[i++]);
}
if(end == farCanReach) {
return -1;
}
}
return step;
}
}