Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
思路:binary search,search左右两边的边界。这种算法确保了寻找左右边界都是log(n).
public class Solution {
public int[] searchRange(int[] nums, int target) {
int[] res = {-1,-1};
res[0] = find(nums, target, 0, nums.length-1, true);
res[1] = find(nums, target, 0, nums.length-1, false);
return res;
}
public int find(int[] nums, int target, int start, int end, boolean leftbound){
if(start>end){
return -1;
}
int mid = start +(end-start)/2;
if(nums[mid] > target){
return find(nums, target, start, mid-1, leftbound);
} else if(nums[mid] < target){
return find(nums, target, mid+1, end, leftbound);
} else { // nums[mid] == target;
if(leftbound){
if(mid-1 < 0 || nums[mid]!=nums[mid-1]){ // mid-1<0 ;越界的情况一定要考虑;
return mid;
} else {
return find(nums, target, start, mid-1, leftbound);
}
} else {
if(mid+1>=nums.length || nums[mid]!=nums[mid+1]){ // mid+1>=nums.length,越界的情况一定要考虑;
return mid;
} else {
return find(nums, target, mid+1, end, leftbound);
}
}
}
}
}