HDU4709 聚集(求三角形面积)
平面上给出N(1<=N<=100)个点,每个点给出的是浮点数的二位平面坐标(x,y)。现在要求的是这N个点中由最少3个点构成的图形中的最小面积。
输入:T(1<=T<=25)表输入实例个数。接下来每个实例第一行是N,接下来N行每行包括两个浮点数表坐标(X,Y)(-1000.0<=X,Y<=1000.0).
输出:输出找到的最小面积值(保留小数点后两位),如果最小面积值是0.00,则输出“Impossible”
分析:本题只需枚举所有的3点,算他们构成的三角形面积即可。其中三角形面积用二维叉积计算。注意:一般浮点运算的题目都要设计eps来控制精度。
AC代码:
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps=1e-8;
struct point
{
double x;
double y;
point(double _x=0,double _y=0){x=_x;y=_y;}
point operator -(const point &b)const
{
return point(x-b.x,y-b.y);
}
double operator ^(const point &b)const
{
return x*b.y-y*b.x;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
int main()
{
int t,n;
scanf("%d",&t);
point p[200];
while(t--)
{
scanf("%d",&n);
for(int i=0;i<n;i++)
p[i].input();
double min_area=1e9;
bool ok=false;
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
for(int k=j+1;k<n;k++)
{
double area = fabs(((p[i]-p[j])^(p[i]-p[k]))/2);
if(area<eps)continue;
ok=true;
min_area = min(min_area,area);
}
if(ok==false)printf("Impossible\n");
else printf("%.2lf\n",min_area);
}
return 0;
}