HDU4709 聚集(求三角形面积)

HDU4709 聚集(求三角形面积)

平面上给出N(1<=N<=100)个点,每个点给出的是浮点数的二位平面坐标(x,y)。现在要求的是这N个点中由最少3个点构成的图形中的最小面积。

输入:T(1<=T<=25)表输入实例个数。接下来每个实例第一行是N,接下来N行每行包括两个浮点数表坐标(X,Y)(-1000.0<=X,Y<=1000.0).

输出:输出找到的最小面积值(保留小数点后两位),如果最小面积值是0.00,则输出“Impossible”

分析:本题只需枚举所有的3点,算他们构成的三角形面积即可。其中三角形面积用二维叉积计算。注意:一般浮点运算的题目都要设计eps来控制精度。

AC代码:

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps=1e-8;
struct point
{
    double x;
    double y;
    point(double _x=0,double _y=0){x=_x;y=_y;}
    point operator -(const point &b)const
    {
        return point(x-b.x,y-b.y);
    }
    double operator ^(const point &b)const
    {
        return x*b.y-y*b.x;
    }
    void input()
    {
        scanf("%lf%lf",&x,&y);
    }
};
int main()
{
    int t,n;
    scanf("%d",&t);
    point p[200];
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            p[i].input();

        double min_area=1e9;
        bool ok=false;
        for(int i=0;i<n;i++)
            for(int j=i+1;j<n;j++)
                for(int k=j+1;k<n;k++)
                {
                    double area = fabs(((p[i]-p[j])^(p[i]-p[k]))/2);
                    if(area<eps)continue;
                    ok=true;
                    min_area = min(min_area,area);
                }
        if(ok==false)printf("Impossible\n");
        else printf("%.2lf\n",min_area);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值