【matlab】MarkDown Letex 编码 之 随机过程及应用(三) - 高斯分布/正态分布的期望和方差

本文通过数学推导证明了高斯分布(正态分布)的期望是其参数u,方差是参数σ的平方。首先,利用积分性质得出基本公式,然后分别对u和σ求导,证明了期望和方差的值,从而确认了高斯分布的特性。
摘要由CSDN通过智能技术生成
 **Provement of Gaussian Distribution:**    
    
设正态分布概率密度函数是
$$f(x)=\frac{1}{\sqrt{2π}\sigma}*e^{\frac{-(x-u)^2}{2\sigma^2}} $$

于是:
$$\int^{+\infty}_{-\infty} \frac{e^{-(x-u)^2}}{2\sigma^2}dx=(\sqrt {2π})t.\ \ \ \ \ \ (*) $$
积分区域是从负无穷到正无穷.
    ||   **1.expectation: 
对 $(*)$ 式两边对 $u$ 求导:
$$\int^{+\infty}_{-\infty} {e^{\frac {-(x-u)^2}{2\sigma^2}}* \frac{-2(x-u)}{2\sigma^2}}dx=0  $$
约去常数,再两边同乘以 $\frac{\sigma}{\sqrt{2π}}$ 得:
$$\int^{+\infty}_{-\infty} e^{\frac{-(x-u)^2}{2\sigma ^2}}*\frac{-(x-u)}{\sqrt{2π}\sigma} dx=0 $$ or$$\int^{+\infty}_{-\infty} e^{\frac{-(x-u)^2}{2\sigma ^2}}*\frac{x-u}{\sqrt{2π}\sigma} dx=0 $$ 
把 $x-u$ 拆开,再移项:
$$\int^{+\infty}_{-\infty} e^{\frac{-(x-u)^2}{2\sigma ^2}}*\frac{x}{\sqrt{2π}\sigma} dx$$ 
$$=\int^{+\infty}_{-\infty} e^{\frac{-(x-u)^2}{2\sigma ^2}}*\frac{u}{\sqrt{2π}\sigma} dx$$ 
也就是 
$$\int^{+\infty}_{-\in
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值