机器学习-特征工程与模型调优
文章平均质量分 81
朱小丰的丰
邮箱762159551@qq.com
展开
-
机器学习- 特征工程概述与意义&基本数据处理 原理
机器学习特征工程1特征工程概述与意义 1.1特征工程与意义 特征 :数据中抽取出来对结果预测有用的信息 特征工程是使用专业背景知识和技巧处理数据 使得特征能在机器学习算法上发挥更好的作用的过程 意义 更好的特征意味着更强的灵活度 只需要简单的模型 更好的结果 1.2工业界的机器学习建模 实际上 ...原创 2018-06-28 09:20:50 · 919 阅读 · 0 评论 -
机器学习-数据处理、特征工程、特征选择 实操
数据处理、特征工程、特征选择不太会粘代码和排版 so 以截图方式 不懂的地方欢迎留言/私聊载入了解一下数据head()info()describe()注:std 标准差基本数据处理0.缺失值处理(两种方式)pandas fillnasklearn Imputer可以用pandas的fillna函数借助sklearn中的Imputerfrom sklearn.preprocessing impor...原创 2018-06-28 14:42:30 · 2208 阅读 · 0 评论