Taianic 数据预处理

该博客详细介绍了Taiannic数据预处理的步骤,包括将DataFrame转换为Array,对数据进行标准化处理以及划分训练集和测试集。通过这些操作,为后续的模型训练做好准备。
摘要由CSDN通过智能技术生成

数据分析处理阶段

# -*- coding: utf-8 -*-  #
#采用utf-8解码 
import urllib.request#下载地址 及相关
import os#判断数据文件是否存在

url="http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls" #数据文件下载路径
filepath="data/titanic3.xls" #本地数据文件路径
url="http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls" #数据文件下载路径
filepath="data/titanic3.xls" #本地数据文件路径
if not os.path.isfile(filepath): #判断本地是否有数据文件 没有 进行在线下载 
    result=urllib.request.urlretrieve(url,filepath)
    print('downloaded:',result)



输出

downloaded: ('data/titanic3.xls', <http.client.HTTPMessage object at 0x7f40f695bda0>)

import numpy #用于科学计算
import pandas as pd #用于数据分析

all_df = pd.read_excel(filepath) #读取数据到all_df中
all_df[:2]#查看前两条数据 选取有用的数据列 其余的列 无意义 如 票号ticket 对要预测的结果没有影响

输出


cols=['survived','name','pclass' ,'sex', 'age', 'sibsp',
      'parch', 'fare', 'embarked']
all_df=all_df[cols]

 
all_df[:2]

输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值