460A Vasya and Socks
题意:n个物品每天用一个 m天得一个 问 最多连续用几天
思路:
没思路… 就是暴力…
代码:
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<vector>
using namespace std;
int main()
{
int n,m,ans=0,i=0;
scanf("%d%d",&n,&m);
while(1)
{
if(!n) break;
n--;
ans++;
i++;
if(i==m)
{
n++;
i=0;
}
}
printf("%d\n",ans);
return 0;
}
460B Little Dima and Equation
题意:给出算式 x=b*S(x)^a+c 其中S(x)表示十进制表示下x的各位数字之和 输入abc 问有几个x满足等式 输出所有x
思路:
x很大 但是S(x)很小最多9*9 又因为算式由等号连接 所以可以枚举S(x)再算x 注意 输出x前一定要排序!!
代码:
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<vector>
using namespace std;
typedef __int64 LL;
int a,b,c,ans,f[1000000];
bool yes(LL t,int i)
{
int tmp=0;
while(t)
{
tmp+=t%10;
t/=10;
}
return tmp==i;
}
int main()
{
int i,j;
LL res;
scanf("%d%d%d",&a,&b,&c);
for(i=1;i<=85;i++)
{
res=1;
for(j=1;j<=a;j++) res*=i;
res=res*b+c;
if(res>0&&res<(int)1e9&&yes(res,i))
{
f[ans++]=res;
}
}
sort(f,f+ans);
printf("%d\n",ans);
for(i=0;i<ans;i++) printf("%d%s",f[i],(i!=ans-1)?" ":"\n");
return 0;
}
460C Present
题意:有n朵花 每天可以浇水连续w朵 浇水后花长高1 问m天后 最矮的花最高有多高
思路:
“最小值最大”想到了二分搜索答案 复杂度O(logx) 如果给出答案如何判断能不能在m天内完成呢 可以O(n)维护实际高度与二分结果的差 然后再O(n)扫一遍 如果这朵花需要浇水 那么连续浇w朵 利用一个add数组和指针k来操作 这样总的复杂度就为O(nlogx) 注意这里x最大值是1e9+1e5
代码:
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<vector>
using namespace std;
typedef __int64 LL;
#define N 200010
int n,m,w;
int a[N],add[N],f[N];
bool yes(int x)
{
int i,k;
LL need=0;
for(i=1;i<=n;i++)
{
add[i]=0;
if(a[i]<x) f[i]=x-a[i];
else f[i]=0;
}
for(i=1,k=0;i<=n;i++)
{
k+=add[i];
if(k<f[i])
{
need+=f[i]-k;
add[i+w]+=k-f[i];
k=f[i];
}
}
return need<=m;
}
int main()
{
int i,l=1,r=(int)1e9+(int)1e6,mid,ans;
scanf("%d%d%d",&n,&m,&w);
for(i=1;i<=n;i++) scanf("%d",&a[i]);
while(l<=r)
{
mid=(l+r)>>1;
if(yes(mid))
{
ans=mid;
l=mid+1;
}
else r=mid-1;
}
printf("%d\n",ans);
return 0;
}
460D Little Victor and Set
题意:构造一个集合 使得集合中不超过k个元素 且每个元素在[L,R]区间内 问该集合所有元素异或和最小是多少并输出一种方案
思路:
一道不错的想法题 一开始只能想到先分类讨论试试
首先只有一个元素 那么异或和就是L 方案也就一个L
接着有两个元素 那么如果是 2x , 2x+1 则异或和为1 方案是连个元素 如果是 2x+1 , 2x 则需要讨论L和L^R谁小
然后有三个元素 一定能构造出异或和为1 尝试构造异或和为0
如果最小的元素是x 那么可以构造出最大的元素y 即如果x的二进制是11001 则y是110000 方法为保留x的最大的1并在前面再填一个1(为什么这样? 因为这两个1就能保证x是三者中最大的) 这时x和y的异或就是中间的元素 那么如果我用L当x 则y如果<=R 就可以有一个解(为什么用L当x 因为这样的y最小)
最后有四个元素 如果刚才的方法构造不出0 还可以这样构造 按照两个元素的方法构造2个1 这样也是0
代码:
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<vector>
using namespace std;
typedef __int64 LL;
LL l,r,k;
int main()
{
scanf("%I64d%I64d%I64d",&l,&r,&k);
if(k>=4)
{
if(l&1)
{
if(l+4<=r)
{
printf("0\n4\n%I64d %I64d %I64d %I64d\n",l+1,l+2,l+3,l+4);
return 0;
}
}
else
{
if(l+3<=r)
{
printf("0\n4\n%I64d %I64d %I64d %I64d\n",l+1,l+2,l+3,l);
return 0;
}
}
}
if(k>=3)
{
LL f,t=l;
int num=0;
while(t)
{
num++;
t>>=1;
}
f=(1LL<<num)|(1LL<<(num-1));
if(f<=r)
{
printf("0\n3\n%I64d %I64d %I64d\n",f,l,f^l);
return 0;
}
}
if(k>=2)
{
if(l&1)
{
if(l+2<=r)
{
printf("1\n2\n%I64d %I64d\n",l+1,l+2);
return 0;
}
}
else
{
if(l+1<=r)
{
printf("1\n2\n%I64d %I64d\n",l,l+1);
return 0;
}
}
if((l^r)<l)
{
printf("%I64d\n2\n%I64d %I64d\n",l^r,l,r);
return 0;
}
}
printf("%I64d\n1\n%I64d\n",l,l);
return 0;
}