D. Little Victor and Set
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Little Victor adores the sets theory. Let us remind you that a set is a group of numbers where all numbers are pairwise distinct. Today Victor wants to find a set of integers S that has the following properties:
- for all x the following inequality holds l ≤ x ≤ r;
- 1 ≤ |S| ≤ k;
- lets denote the i-th element of the set S as si; value must be as small as possible.
Help Victor find the described set.
Input
The first line contains three space-separated integers l, r, k (1 ≤ l ≤ r ≤ 1012; 1 ≤ k ≤ min(106, r - l + 1)).
Output
Print the minimum possible value of f(S). Then print the cardinality of set |S|. Then print the elements of the set in any order.
If there are multiple optimal sets, you can print any of them.
Sample test(s)
input
8 15 3
output
1 2 10 11
input
8 30 7
output
0 5 14 9 28 11 16
题意:给出l,r,选出一个集合元素<=k的集合,且不能有重复的数,使得集合所有数的异或值最小
思路:这应该算是一道规律题
1. k=1,则答案为l
2. k=2,如果可以选择一奇一偶,这里偶数比奇数小1,则答案为0,否则选择l和l^r中较小的一个
3. k=4,如果可以选择四个连续的数,使得最小的一个数为偶数,则答案为0,否则转k=3或k=2或k=1处理
4. k=3,找出形如 11xxxx,10zzzz,01yyyy,这里10zzzz=11xxxx^01yyyy,基于贪心的思想可以将01yyyy取为l,算出11xxxx<=r,则答案为0,否则转k=2或k=1处理
#include
#include
#include
#include
#include
using namespace std; typedef long long ll; ll l,r,k; ll a[1000010]; int d1; struct node{ ll w; ll b[5]; int cnt; }; node b[20]; ll c[5]; bool cmp(node a,node b) { return a.w
r){ if(!cent)return; b[d1].cnt=cent; for(int i=0;i
>l>>r>>k) { ll ans,x; int d=0,i,j; if(k==1){ ans=l; a[d++]=l; } else{ if(r-l<4){ d1=0; dfs(l,r,0,0); sort(b,b+d1,cmp); for(i=0;i
=4){ for(x=l;x<=r;x++)if(x%2==0)break; ans=0; a[d++]=x; a[d++]=x+1; a[d++]=x+2; a[d++]=x+3; } else { ll now=l; int bi=0; while(now){ now>>=1; bi++; } now=3; while(--bi)now<<=1; if(now<=r){ ans=0; a[d++]=now; a[d++]=now^l; a[d++]=l; } else { for(x=l;x<=r;x++)if(x%2==0)break; ans=1; a[d++]=x; a[d++]=x+1; } } } } cout<
<
<
<