人工智能之概率轮--5个灯泡的概率问题

题目:假设某电路由5个灯泡组装而成,连接方式如图所示。

假设5个灯泡在某时间范围内各自都能正常工作的概率都是p,且它们正常工作的事件是相互独立的,请问该电路在该时间范围内正常工作的概率是多少?

 

答:

第一种分析方法:

设2,3,1,4,5,分别为A,B,C,D,E。

那么有:

P(A)=P(B)=P(C)=P(D)=P(E)=P

元件C是关键,

如果C正常工作,那么就会有四条通路:ACB,ACE,DCB,DCE。

如果C不能正常工作,那么只有两条通路:AB,DE。

所以系统正常工作的概率如下:

P(C)P(AB+AE+DB+DE)+P(非C)P(AB+DE)

其中P(非C)=1-P。

化简以后得到

P(C)P(A+D)P(B+E)+P(非C)P(AB+DE)

首先计算各项的值,

P(A+D)=P(A)+P(D)-P(A)*P(D)=2P-P²

p(B+E)=P(B)+P(E)-P(B)*P(E)=2P-P²

P(AB+DE)=P(AB)+P(DE)-P(AB)*P(DE)

=P(A)*P(B)+P(D)*P(E)-P(A)*P(B)*P(D)*P(E)

=P*P+P*P-P*P*P*P

=2P²-P^4

P(工作)= P(C)P(A+D)P(B+E)+P(非C)P(AB+DE)

=P*(2P-P²)²+(1-P)*(2P²-P^4)

=2P^2+2P^3-5P^4+2P^5

所以最后可靠性就是2P^2+2P^3-5P^4+2P^5

 

 

第二种分析方法:

 

 

运用的概率公式:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值