地面两点A和B的经纬度坐标分别为(Aj,Aw)和(Bj,Bw),地球半径R取平均值6371km。
地球球心为原点O,地轴为Z轴,北极方向为Z轴正方向,赤道平面为X轴和Y轴所在平面,在该平面上地心到零度经线的方向为X轴正方向,根据右手定则确定Y轴正方向。
设点A的三维坐标为(Ax,Ay,Az),点B的三维坐标为(Bx,By,Bz)
A、B、O三点所在平面与地球相交形成一个半径为R的圆,求AB间的地面距离就是求该圆上圆弧AB的长度。可由弧长等于半径乘以圆心角公式求得。
由于R是确定的,只要获得OA与OB的夹角θ就可以获得弧AB的长度。弧AB=R*θ。
角θ可通过向量公式求得:向量OA*向量OB=|OA||OB|cosθ。
则
cosθ=向量OA*向量OB/|OA||OB|
=(Ax*Bx+Ay*By+Az*Bz)/R*R
用经纬度坐标表示三维直角坐标:
Ax=R*cosAw*cosAj
Ay=R*cosAw*sinAj
Az=R*sinAw
Bx=R*cosBw*cosBj
By=R*cosBw*sinBj
Bz=R*sinBw
代入可得
cosθ=cosAw*cosAj*cosBw*cosBj+cosAw*sinAj*cosBw*sinBj+sinAw*sinBw
=cosAw*cosBw(cosAj*cosBj+sinAj*sinBj)+sinAw*sinBw
=cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw
θ=arccos[cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw]
5综上可得根据经纬度计算地面两点间距离的公式:
弧AB=R*arccos[cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw]
代码如下
double GetDistanceA(double Srclon, double Srclat, double Destlon, double Destlat)
{
double r1 = rad(Srclat);
double r2 = rad(Srclon);
double a = rad(Destlat);
double b = rad(Destlon);
double s = acos(cos(r1) * cos(a) * cos(r2 - b) + sin(r1) * sin(a)) * EARTH_RADIUS * 1000;
return s;
}