经纬度计算地球两点间距离

地面两点AB的经纬度坐标分别为(Aj,Aw)(Bj,Bw),地球半径R取平均值6371km

地球球心为原点O,地轴为Z轴,北极方向为Z轴正方向,赤道平面为X轴和Y轴所在平面,在该平面上地心到零度经线的方向为X轴正方向,根据右手定则确定Y轴正方向。
设点A的三维坐标为(Ax,Ay,Az),点B的三维坐标为(Bx,By,Bz)

ABO三点所在平面与地球相交形成一个半径为R的圆,求AB间的地面距离就是求该圆上圆弧AB的长度。可由弧长等于半径乘以圆心角公式求得。
由于R是确定的,只要获得OAOB的夹角θ就可以获得弧AB的长度。弧AB=R*θ
θ可通过向量公式求得:向量OA*向量OB=|OA||OB|cosθ

cosθ=向量OA*向量OB/|OA||OB|
     =(Ax*Bx+Ay*By+Az*Bz)/R*R

用经纬度坐标表示三维直角坐标:

Ax=R*cosAw*cosAj
Ay=R*cosAw*sinAj
Az=R*sinAw

Bx=R*cosBw*cosBj
By=R*cosBw*sinBj
Bz=R*sinBw


代入可得
cosθ=cosAw*cosAj*cosBw*cosBj+cosAw*sinAj*cosBw*sinBj+sinAw*sinBw
     =cosAw*cosBw(cosAj*cosBj+sinAj*sinBj)+sinAw*sinBw
     =cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw
θ=arccos[cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw]

5综上可得根据经纬度计算地面两点间距离的公式:

AB=R*arccos[cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw]
 

代码如下
double GetDistanceA(double Srclon, double Srclat, double Destlon, double Destlat)
{
    double r1 = rad(Srclat);
    double r2 = rad(Srclon);
    double a = rad(Destlat);
    double b = rad(Destlon);
    double s = acos(cos(r1) * cos(a) * cos(r2 - b) + sin(r1) * sin(a)) * EARTH_RADIUS * 1000;
    return s;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

feibaoqq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值