yolov5环境达间,并训练数据集模型

0    前言

1、深度学习环境的配置和安装yolov5所需要的库

2、数据集和预训练权重的准备

2.1 利用labelimg对数据进行标注和划分

2.2 下载预训练权重

3、训练自己的模型

3.1 修改一些文件配置

3.2 训练自己的模型

3.3 启用tensorbord查看参数

4 、利用自己训练的模型检测识别

5 、常见一些报错问题

1、

    1. 安装3.8版本的python
  1. 安装python3.8

conda install python=3.8

  1. 查看python版本

python --version

    1. 安装cuda、cudnn
      1. 安装 cuda
  1. 打开英伟达官网下载对应的cuda版本

注意:yolov后处理加速的版本最高只能是1.13版本的pytorch,cuda的版本需要和pytorch版本对应,故而最好下载11.3版本的cuda

https://developer.nvidia.com/cuda-toolkit-archive

https://developer.nvidia.com/cuda-downloads

  1. 并且选择相应配置,复制指令至终端下载

wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run

sudo sh cuda_11.3.0_465.19.01_linux.run

  1. 注意:按回车取消Driver项的安装,然后回车选择Install

此过程执行会慢一些,稍等个片刻即可

  1. 添加环境变量

       vi ~/.bashrc打开文件,在文件结尾添加如下语句 ,注意更改cuda-11.3的版本

vi ~/.bashrc

export PATH=$PATH:/usr/local/cuda-11.3/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.3/lib64

export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-11.3/lib64

  1. 保存、更新环境变量

source ~/.bashrc

  1. 查看版本号,输入:

nvcc -V

      1. 安装cudnn
  1. 进入官网,下载和cuda对应的cudnn版本(8.9.0)

https://developer.nvidia.com/rdp/cudnn-archive

选择下面的文件进行安装:

这里注意,下载包需要登录英伟达账号,需要到邮箱中点击验证

  1. 安装上述软件包(下面的版本号有所不同,换成自己下载的版本)

tar -xvf cudnn-linux-x86_64-8.9.0.131_cuda11-archive.tar.xz

sudo cp cudnn-linux-x86_64-8.9.0.131_cuda11-archive/include/cudnn*.h  /usr/local/cuda/include

sudo cp -P cudnn-linux-x86_64-8.9.0.131_cuda11-archive/lib/libcudnn*  /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn*.h  /usr/local/cuda/lib64/libcudnn*

  1. cudnn 检测版本号

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

出现以下信息说明安装成功,由于安装的cuDNN版本是8.9.0,所以MAJOR、     MINORPATCHLEVEL依次是8、9、0

    1. 系统化环境中安装pytorch

注:本次选择

  1. 进入官网按照所提供的命令下载,注意不要用在线的方式

Start Locally | PyTorch

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

  1. 离线安装pytorch

资源下载地址:https://download.pytorch.org/whl/torch_stable.html

注意torch的版本需要和python对应,如cp39对应的是3.9的python

国内源(未验证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

feibaoqq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值