0 前言
1、深度学习环境的配置和安装yolov5所需要的库
2、数据集和预训练权重的准备
2.1 利用labelimg对数据进行标注和划分
2.2 下载预训练权重
3、训练自己的模型
3.1 修改一些文件配置
3.2 训练自己的模型
3.3 启用tensorbord查看参数
4 、利用自己训练的模型检测识别
5 、常见一些报错问题
1、
- 安装python3.8
conda install python=3.8
- 查看python版本
python --version
- 打开英伟达官网下载对应的cuda版本
注意:yolov后处理加速的版本最高只能是1.13版本的pytorch,cuda的版本需要和pytorch版本对应,故而最好下载11.3版本的cuda
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-downloads
- 并且选择相应配置,复制指令至终端下载
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run
- 注意:按回车取消Driver项的安装,然后回车选择Install
此过程执行会慢一些,稍等个片刻即可
- 添加环境变量
vi ~/.bashrc打开文件,在文件结尾添加如下语句 ,注意更改cuda-11.3的版本:
vi ~/.bashrc
export PATH=$PATH:/usr/local/cuda-11.3/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.3/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-11.3/lib64
- 保存、更新环境变量
source ~/.bashrc
- 查看版本号,输入:
nvcc -V
- 进入官网,下载和cuda对应的cudnn版本(8.9.0)
https://developer.nvidia.com/rdp/cudnn-archive
选择下面的文件进行安装:
这里注意,下载包需要登录英伟达账号,需要到邮箱中点击验证
- 安装上述软件包(下面的版本号有所不同,换成自己下载的版本)
tar -xvf cudnn-linux-x86_64-8.9.0.131_cuda11-archive.tar.xz
sudo cp cudnn-linux-x86_64-8.9.0.131_cuda11-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp -P cudnn-linux-x86_64-8.9.0.131_cuda11-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
- cudnn 检测版本号
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
出现以下信息说明安装成功,由于安装的cuDNN版本是8.9.0,所以MAJOR、 MINORPATCHLEVEL依次是8、9、0
注:本次选择
- 进入官网按照所提供的命令下载,注意不要用在线的方式
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
- 离线安装pytorch
资源下载地址:https://download.pytorch.org/whl/torch_stable.html
注意torch的版本需要和python对应,如cp39对应的是3.9的python
国内源(未验证