【HDU】4960 Another OCD Patient 【DP】

传送门:【HDU】4960 Another OCD Patient


题目分析:比赛的时候写的太乱了,本来不需要合并的地方也合并了,现在重新改了改倒是清爽多了,顺便贴一下。

由于题目需要我们将原数组变成回文串,所以我们可以一开始就将原数组中必须合并的先合并了。那么什么是必须合并的呢?注意到左右对称,所以我们可以将左端的数相加正好等于右端的左右两个块分别合并(一定这样得到的是极小块),怎么相加呢?很简单,左边的数和比右边的小,左边再加一个数,右边的数和比左边的小,右边再加一个数,直到左右两边数相等时(合并)或者i>=j(退出)。

将得到的左右第 i 块中元素的数量用L[ i ]、R[ i ]表示,设得到左右得到的块数均为m(事实上左右的确是相等的)。

并设cost[ i ]为合并了i个元素的花费。

现在我们设dp[ i ]为添加了第L[ i ] 和R[ i ]块后形成回文串的最小花费。

dp[ i ] = min{ dp[ j - 1 ] + cost[ lnum[ j , i ] ] + cost[ rnum[ j , i ] ] | 1 <= j <= i , lnum[ j , i ]表示左边第j块到第i块元素个数总数,rnum[ j , i ]同理}。

最后再枚举中间合并的那一堆的数量,得到表达式minv = min{cost[ n ] , dp[ i ] + cost[ n - lnum[ i ] - rnum[ i ] ] | i <= m,lnum[ i ]表示从第1块到第i块的总元素个数,rnum[ i ]同理}。


代码如下:


#include <cstdio>
#include <cstring>
#include <algorithm>
#include <math.h>
using namespace std ;

#define REP( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )

typedef long long LL ;

const int MAXN = 5005 ;
const int INF = 0x3f3f3f3f ;

int a[MAXN] , cost[MAXN] ;
int L[MAXN] , R[MAXN] , top ;
int dp[MAXN] ;
int n , m ;

void solve () {
	top = 0 ;
	FOR ( i , 1 , n ) scanf ( "%d" , &a[i] ) ;
	FOR ( i , 1 , n ) scanf ( "%d" , &cost[i] ) ;
	for ( int i = 1 , j = n ; i < j ; ++ i , -- j ) {
		LL Lsum = a[i] , Rsum = a[j] ;
		int Lnum = 1 , Rnum = 1 ;
		while ( Lsum != Rsum ) {
			if ( i >= j ) break ;
			if ( Lsum < Rsum ) {
				++ Lnum ;
				Lsum += a[++ i] ;
			} else {
				++ Rnum ;
				Rsum += a[-- j] ;
			}
		}
		if ( Lsum == Rsum ) {
			++ top ;
			L[top] = Lnum ;
			R[top] = Rnum ;
		}
	}
	FOR ( i , 1 , top ) {
		int tmp1 = 0 , tmp2 = 0 ;
		dp[i] = INF ;
		REV ( j , i , 1 ) {
			tmp1 += L[j] ;
			tmp2 += R[j] ;
			dp[i] = min ( dp[i] , dp[j - 1] + cost[tmp1] + cost[tmp2] ) ;
		}
	}
	int minv = cost[n] , ans = n ;
	FOR ( i , 1 , top ) {
		ans -= L[i] + R[i] ;
		minv = min ( minv , dp[i] + cost[ans] ) ;
	}
	printf ( "%d\n" , minv ) ;
}

int main () {
	while ( ~scanf ( "%d" , &n ) && n ) solve () ;
	return 0 ;
}


### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值