【HDU】3768 Shopping 最短路+DP

传送门:【HDU】3768 Shopping


题目分析:羞愧死了。。。竟然把优先队列敲错了还没有发现。。。。。spfa轻松抢第一~~

首先最短路预处理出所有的商店到家以及其他商店的最短路,然后就是TSP形式的dp了。

真是的。。。早知道写spfa了。。。纠结了这么久还以为dp写错了。。


代码如下:


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

#define REP( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i )
#define FOR( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define REV( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next )
#define CLR( a , x ) memset ( a , x , sizeof a )

const int MAXN = 100005 ;
const int MAXH = 200005 ;
const int MAXE = 200005 ;
const int INF = 0x3f3f3f3f ;

struct Edge {
	int v , c ;
	Edge* next ;
} ;

struct Heap {
	int v , idx ;
	Heap () {}
	Heap ( int v , int idx ) : v ( v ) , idx ( idx ) {}
	bool operator < ( const Heap& a ) const {
		return v < a.v ;
	}
} ;

struct priority_queue {
	Heap h[MAXH] ;
	int point ;
	priority_queue () : point ( 1 ) {}
	void clear () {
		point = 1 ;
	}
	void maintain ( int o ) {
		int p = o , l = o << 1 , r = o << 1 | 1 ;
		while ( o > 1 && h[o] < h[o >> 1] ) {
			swap ( h[o] , h[o >> 1] ) ;
			o >>= 1 ;
		}
		o = p ;
		while ( o < point ) {
			if ( l < point && h[l] < h[p] ) p = l ;
			if ( r < point && h[r] < h[p] ) p = r ;
			if ( p == o ) break ;
			swap ( h[o] , h[p] ) ;
			o = p , l = o << 1 , r = o << 1 | 1 ;
		}
	}
	void push ( int v , int idx ) {
		h[point] = Heap ( v , idx ) ;
		maintain ( point ++ ) ;
	}
	void pop () {
		h[1] = h[-- point] ;
		maintain ( 1 ) ;
	}
	bool empty () {
		return point == 1 ;
	}
	int front () {
		return h[1].idx ;
	}
	
} ;

struct Shortest_Path_Algorithm {
	priority_queue q ;
	Edge E[MAXE] , *H[MAXN] , *cur ;
	int d[MAXN] ;
	bool vis[MAXN] ;
	int Q[MAXN] , head , tail ;
	void init () {
		cur = E ;
		CLR ( H , 0 ) ;
	}
	void addedge ( int u , int v , int c ) {
		cur -> v = v ;
		cur -> c = c ;
		cur -> next = H[u] ;
		H[u] = cur ++ ;
	}
	void dijkstra ( int s ) {
		q.clear () ;
		CLR ( vis , 0 ) ;
		CLR ( d , INF ) ;
		d[s] = 0 ;
		q.push ( d[s] , s ) ;
		while ( !q.empty () ) {
			int u = q.front () ;
			q.pop () ;
			if ( vis[u] ) continue ;
			vis[u] = 1 ;
			travel ( e , H , u ) {
				int v = e -> v , c = e -> c ;
				if ( d[v] > d[u] + c ) {
					d[v] = d[u] + c ;
					q.push ( d[v] , v ) ;
				}
			}
		}
	}
	void spfa ( int s ) {
		head = tail = 0 ;
		CLR ( d , INF ) ;
		CLR ( vis , 0 ) ;
		d[s] = 0 ;
		Q[tail ++] = s ;
		while ( head != tail ) {
			int u = Q[head ++] ;
			if ( head == MAXN ) head = 0 ;
			vis[u] = 0 ;
			travel ( e , H , u ) {
				int v = e -> v , c = e -> c ;
				if ( d[v] > d[u] + c ) {
					d[v] = d[u] + c ;
					if ( !vis[v] ) {
						vis[v] = 1 ;
						if ( d[v] < d[Q[head]] ) {
							if ( head == 0 ) head = MAXN ;
							Q[-- head] = v ;
						} else {
							Q[tail ++] = v ;
							if ( tail == MAXN ) tail = 0 ;
						}
					}
				}
			}
		}
	}
} G ;

int dist[10][11] ;
int store[11] ;
int dp[1 << 10][10] ;

void scanf ( int& x , char c = 0 ) {
	while ( ( c = getchar () ) < '0' || c > '9' ) ;
	x = c - '0' ;
	while ( ( c = getchar () ) >= '0' && c <= '9' ) x = x * 10 + c - '0' ;
}

void solve () {
	int n , m , s ;
	int u , v , c ;
	G.init () ;
	scanf ( n ) ;
	scanf ( m ) ;
	while ( m -- ) {
		scanf ( u ) , scanf ( v ) , scanf ( c ) ;
		G.addedge ( u , v , c ) ;
		G.addedge ( v , u , c ) ;
	}
	scanf ( s ) ;
	REP ( i , 0 , s ) scanf ( store[i] ) ;
	store[s] = 0 ;
	REP ( i , 0 , s ) {
		G.spfa ( store[i] ) ;
		FOR ( j , 0 , s ) dist[i][j] = G.d[store[j]] ;
	}
	int tot = 1 << s ;
	CLR ( dp , INF ) ;
	REP ( i , 0 , s ) dp[1 << i][i] = dist[i][s] ;
	REP ( i , 0 , tot )
		REP ( j , 0 , s )
			if ( dp[i][j] != INF )
				REP ( k , 0 , s )
					dp[i | ( 1 << k )][k] = min ( dp[i | ( 1 << k )][k] , dp[i][j] + dist[j][k] ) ;
	int ans = INF ;
	REP ( i , 0 , s ) ans = min ( ans , dp[tot - 1][i] + dist[i][s] ) ;
	printf ( "%d\n" , ans ) ;
}

int main () {
	int T ;
	scanf ( T ) ;
	while ( T -- ) solve () ;
	return 0 ;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值