【HDU】1402 A * B Problem Plus 【FFT】

本文介绍如何利用快速傅里叶变换(FFT)优化大数乘法问题的求解过程,通过阅读算法导论并实现自己的代码,实现高效的大数乘法计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:【HDU】1402 A * B Problem Plus

题目分析:

这就是大数乘法题,问两个大数相乘的结果,由于 O(n2) 的算法复杂度太大,所以我们用FFT来优化他。关于FFT网上资料很多,我就不多说啦。

这是我做的第一道FFT,FFT是看算法导论学来的,感觉算导讲的很不错,简单易懂~

my code:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std ;

typedef long long LL ;

#define clr( a , x ) memset ( a , x , sizeof a )
#define cpy( a , x ) memcpy ( a , x , sizeof a )

const int MAXN = 200005 ;
const double pi = acos ( -1.0 ) ;

struct Complex {
    double r , i ;
    Complex () {}
    Complex ( double r , double i ) : r ( r ) , i ( i ) {}
    Complex operator + ( const Complex& t ) const {
        return Complex ( r + t.r , i + t.i ) ;
    }
    Complex operator - ( const Complex& t ) const {
        return Complex ( r - t.r , i - t.i ) ;
    }
    Complex operator * ( const Complex& t ) const {
        return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
    }
} ;

void FFT ( Complex y[] , int n , int rev ) {
    for ( int i = 1 , j , k , t ; i < n ; ++ i ) {
        for ( j = 0 , k = n >> 1 , t = i ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;
        if ( i < j ) swap ( y[i] , y[j] ) ;
    }
    for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {
        Complex wn = Complex ( cos ( rev * 2 * pi / s ) , sin ( rev * 2 * pi / s ) ) , w = Complex ( 1 , 0 ) , t ;
        for ( int k = 0 ; k < ds ; ++ k , w = w * wn ) {
            for ( int i = k ; i < n ; i += s ) {
                y[i + ds] = y[i] - ( t = w * y[i + ds] ) ;
                y[i] = y[i] + t ;
            }
        }
    }
    if ( rev == -1 ) for ( int i = 0 ; i < n ; ++ i ) y[i].r /= n ;
}

char s1[MAXN] , s2[MAXN] ;
Complex x1[MAXN] , x2[MAXN] ;
int num[MAXN] ;

void solve () {
    int n1 = strlen ( s1 ) ;
    int n2 = strlen ( s2 ) ;
    int n = 1 ;
    while ( n < n1 + n2 ) n <<= 1 ;
    for ( int i = 0 ; i < n1 ; ++ i ) x1[i] = Complex ( s1[n1 - i - 1] - '0' , 0 ) ;
    for ( int i = n1 ; i < n ; ++ i ) x1[i] = Complex ( 0 , 0 ) ;
    for ( int i = 0 ; i < n2 ; ++ i ) x2[i] = Complex ( s2[n2 - i - 1] - '0' , 0 ) ;
    for ( int i = n2 ; i < n ; ++ i ) x2[i] = Complex ( 0 , 0 ) ;
    FFT ( x1 , n , 1 ) ;
    FFT ( x2 , n , 1 ) ;
    for ( int i = 0 ; i < n ; ++ i ) x1[i] = x1[i] * x2[i] ;
    FFT ( x1 , n , -1 ) ;
    int t = 0 ;
    for ( int i = 0 ; i < n ; ++ i , t /= 10 ) {
        t += ( int ) ( x1[i].r + 0.1 ) ;
        num[i] = t % 10 ;
    }
    for ( ; t ; t /= 10 ) num[n ++] = t % 10 ;
    while ( n > 1 && !num[n - 1] ) -- n ;
    for ( int i = n - 1 ; i >= 0 ; -- i ) printf ( "%d" , num[i] ) ;
    printf ( "\n" ) ;
}

int main () {
    while ( ~scanf ( "%s%s" , s1 , s2 ) ) solve () ;
    return 0 ;
}
HDU 2034 是一道经典的 A-B Problem 题目,通常涉及简单的数学运算或者字符串处理逻辑。以下是对此类问题的分析以及可能的解决方法。 ### HDU 2034 的题目概述 该题目要求计算两个数之间的差值 \(A - B\) 并输出结果。需要注意的是,输入数据可能存在多种情况,因此程序需要能够适应不同的边界条件和特殊情况[^1]。 #### 输入描述 - 多组测试数据。 - 每组测试数据包含两行,分别表示整数 \(A\) 和 \(B\)。 #### 输出描述 对于每组测试数据,输出一行表示 \(A - B\) 的结果。 --- ### 解决方案 此类问题的核心在于正确读取多组输入并执行减法操作。以下是实现此功能的一种常见方式: ```python while True: try: a = int(input()) b = int(input()) print(a - b) except EOFError: break ``` 上述代码片段通过循环不断接收输入直到遇到文件结束符 (EOF),适用于批量处理多组测试数据的情况。 --- ### 特殊考虑事项 尽管基本思路简单明了,在实际编码过程中仍需注意以下几点: 1. **大数值支持**:如果题目中的 \(A\) 或 \(B\) 可能非常大,则应选用可以容纳高精度的数据类型来存储这些变量。 2. **负数处理**:当 \(B>A\) 导致结果为负时,确保程序不会因符号错误而失效。 3. **异常捕获**:为了防止运行期间由于非法字符或其他意外状况引发崩溃,建议加入必要的错误检测机制。 --- ### 示例解释 假设给定如下样例输入: ``` 5 3 7 2 ``` 按照以上算法流程依次完成各步操作后得到的结果应当分别为 `2` 和 `5`。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值