计算机毕业设计的创新点和亮点是项目成功的关键要素,它们能够体现学生的技术实力、创新思维以及解决实际问题的能力。以下是一些规划计算机毕业设计创新点和亮点的建议:
一、明确目标与定位
- 选题方向:结合个人兴趣、专业方向和市场需求,选择一个具有实际应用价值和研究意义的课题。例如,软件开发、数据分析与大数据、人工智能与机器学习、网络与信息安全、物联网与嵌入式系统等。
- 研究现状调研:通过查阅相关领域的最新论文、专利和技术报告,了解当前研究现状和发展趋势,找到现有研究的不足和可以改进的地方,为设计提供创新方向。
二、技术创新与改进
- 算法优化:尝试改进现有的算法,使其更高效、更精确或更适合特定的问题。例如,在机器学习领域,可以优化分类或聚类算法;在图像处理领域,可以改进图像识别算法等。
- 技术应用创新:将计算机技术应用到新的领域中,或者解决特定领域的难题。例如,将人工智能技术应用到医疗、农业、金融等领域,开发智能诊断系统、智能农业管理系统、智能风控系统等。
- 新技术开发:探索和开发新技术,以解决现有技术无法解决的问题。例如,开发新的数据加密技术、新的软件架构和开发方法、新的交互模式等。
三、用户体验与界面创新
- 用户界面优化:设计直观、易用的用户界面,提高用户体验。例如,采用现代化的设计风格、优化布局和导航、增加交互性等。
- 个性化推荐:通过分析用户行为和偏好,为用户提供个性化的推荐服务。例如,在电商平台中,根据用户的购买历史和浏览记录推荐相关商品;在社交媒体中,根据用户的兴趣标签推荐相关内容。
- 可视化设计:利用数据可视化技术,将复杂的数据以直观、易懂的形式呈现出来。例如,在数据分析系统中,使用柱状图、折线图、饼图等图表展示数据;在地理信息系统中,使用地图和图表展示位置信息和数据分布。
四、系统架构与安全性增强
- 系统架构优化:改进现有的系统架构,使其更高效、更可靠或者更容易扩展。例如,开发新的云计算平台、分布式系统架构或微服务架构等。
- 安全性增强:加强系统的安全性,保护用户的数据和隐私。例如,开发新的加密算法、防火墙技术或安全审计系统;采用多因素认证、数据加密传输等安全措施。
下面举例介绍一些比较常见易懂的亮点创新点设计。
一、常规推荐算法类:
标签算法:
标签算法通过一系列复杂的计算和分析过程,将数据或文本内容自动分配到预定义的类别或标签中。用户注册的时候可以设定喜欢的标签,登录会根据选择的标签进行算法推荐。
点击量排序推荐:
首页推荐是按点击次数排序的,点击次数高的会排在最前面 。
收藏类别推荐:
首页推荐是按用户收藏类型排序的,收藏一种类型后该类型会排在最前面。
协同过虑算法推荐:
协同过滤算法(Collaborative Filtering, CF)是一种广泛应用的推荐算法,它通过分析和挖掘用户的历史行为数据,发现用户之间的相似性或者物品之间的相似性,从而为用户推荐他们可能感兴趣的物品。我们所使用的协同过滤算法是基于用户的协同过滤(User-Based Collaborative Filtering, UserCF),它的原理是首先计算用户之间的相似度,然后根据相似用户的行为和评分来预测目标用户对未评分物品的兴趣程度。相似度计算方法:包括余弦相似度、皮尔逊相关系数、杰卡德相似系数等。通过用户行为相似度来推荐物品,比如:用户1购买商品A和商品B,用户2购买商品C,然后用户3登录购买商品A,那么此时用户3的行为跟用户1是最像的(因为他们都买了商品A),系统就会先推荐商品B,而不是推荐商品C,只要用户通过购买或者收藏都可以实现协同算法的推荐。
二、大数据推荐算法
机器学习之决策树算法:
决策树(Decision Tree)是机器学习领域中一种极具代表性的算法,主要用于解决分类和回归问题,通过递归分割数据构建树形结构用于分类或回归任务 决策树是一种树形结构,其中每个内部节点表示一个特征(或属性),每个分支表示一个特征取值的判断条件,而每个叶子节点表示一个类别(对于分类问题)或者一个数值(对于回归问题)。通过对特征的逐层划分,决策树可以对数据进行分类或者预测。该算法使用场景一般用于有分类性质的项目预测、医学诊断、金融领域、市场营销、人脸识别、数据分析与预测等,比如根据数据判断是不是某种动物,是不是优质客户。
机器学习之随机森林分类算法:
随机森林分类算法是一种集成学习方法,由Leo Breiman在2001年提出。该算法通过构建多个决策树并综合它们的预测结果来提高分类的准确性,随机森林的核心思想在于“随机”和“集成” 而随机森林一种由决策树构成的(并行)集成算法,属于Bagging类型。它通过组合多个弱分类器(即决策树),并采用投票的方式(对于分类任务)或取均值的方式(对于回归任务)得出最终结果,从而使得整体模型具有较高的精确度和泛化性能。该算法使用场景有商品推荐、图像处理、用户分类、金融、医疗、电商、科研与教育、体育竞技、农业与环境保护、物流等。随机森林分类算法的应用场景非常广泛,几乎涵盖了所有需要分类和预测的领域。其强大的分类能力和鲁棒性使得它成为许多复杂问题解决方案的首选算法之一。
机器学习之随机森林回归算法:
随机森林回归算法是一种强大且灵活的机器学习算法,通过集成多个决策树的预测结果来提高模型的性能。它在处理大规模数据集、高维数据以及非线性关系时表现出色,是机器学习领域的重要工具之一。该算法通过构建多个决策树,并将它们的预测结果进行集成,从而提高了模型的预测精度和稳定性。也是一种基于线性回归算法的优化进阶算法。使用场景如医疗健康、用户行为分析、库存管理、推荐系统、图像识别与分类、还可以适用于房价,销售,贷款额度等大数据预测。比如:
· 用户行为分析:通过分析用户的浏览记录、购买记录等行为数据,随机森林算法可以预测用户的兴趣偏好和购买意向,从而实现个性化推荐和精准营销。
· 库存管理:结合销售数据、市场需求等信息,随机森林算法可以帮助电商企业优化库存管理策略,减少库存积压和缺货现象。
· 信用评估:在信贷风控中,随机森林算法可以分析借款人的个人信息、历史借贷记录等数据,预测其违约风险,为金融机构提供决策支持。
· 图像识别与分类:随机森林算法在图像处理和计算机视觉领域也有一定应用,可以用于图像识别、分类等任务。虽然深度学习算法在这一领域更为常见,但随机森林算法在某些特定场景下仍具有优势。
机器学习之线性回归算法:
线性回归算法是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。它通过拟合一条直线(或超平面)来描述自变量和因变量之间的线性关系。在只有一个自变量的情况下,称为单变量线性回归;在多于一个自变量的情况下,称为多元线性回归,是一种预测连续形变量的统计方法,也是是机器学习中一种经典且广泛应用的算法,主要用于处理连续型数值预测问题。使用场景如市场营销、教育评估、人力资源管理、销售预测、交通规划等,线性回归算法因其简单性和有效性,在多个领域都有广泛应用,包括但不限于:
房价预测:通过分析房屋的各种特征(如面积、位置、装修等)来预测房价。
销售预测:基于历史销售数据和市场趋势来预测未来的销售额。
贷款额度评估:根据借款人的信用记录、收入情况等因素来评估贷款额度。
医疗健康:预测疾病风险、药物效果等。
金融市场:预测股票价格、汇率等。
员工培训时间与绩效关系:人力资源管理者可以利用线性回归模型分析员工培训时间与工作绩效之间的线性关系,以确定最有效的培训时长和方式。
工资与员工满意度关系:通过线性回归,可以研究工资水平对员工满意度的影响,帮助企业制定更具吸引力的薪酬政策。
深度学习之LSTM算法:
深度学习中的LSTM(Long Short-Term Memory)算法是一种特殊的循环神经网络(RNN)变体,专为处理序列数据而设计,用于解决标准循环网路的梯度消失问题,尤其在需要捕捉长期依赖关系的情况下表现出色。使用场景如进行时间序列的预测,主要进行未来数据的预测,比如预测未来多少天的天气情况等几点:
金融市场预测:LSTM可用于预测股票价格、汇率、交易量等金融指标的未来走势。通过分析历史交易数据,LSTM能够捕捉市场趋势和波动,为投资者提供决策支持。
销售预测:在零售和电商领域,LSTM可以根据历史销售数据预测未来一段时间内的销售量、库存需求等,帮助企业进行供应链管理和库存优化。
情感分析:通过分析文本数据中的情感倾向,LSTM可以对文本进行情感分类,判断其是正面、负面还是中性情感,这在社交媒体分析、品牌监测等领域具有重要应用价值
疾病预测:利用患者的历史医疗记录、生活习惯等数据,LSTM可以预测患者未来患某种疾病的风险。
三、加密算法:
DES加密算法:
DES(Data Encryption Standard)是一种对称密钥加密算法,由IBM在20世纪70年代研发,并于1977年被美国国家标准局采纳为联邦信息处理标准。它使用64位数据块和56位密钥进行加密,通过初始置换、16轮复杂变换和末置换完成加密过程。在程序中,所有类型的用户密码,手机,身份证等等需要加密时可以使用。对所有用户的密码数据进行加密,对密码会进行隐藏,它使用64位数据块和56位密钥进行加密,通过初始置换、16轮复杂变换和末置换完成加密过程。
AES加密算法:
AES加密算法是一种广泛使用的对称密钥加密算法,采用128位固定分组长度和多种密钥长度(128、192或256位),通过一系列操作如字节替代、行移位、列混淆和轮密钥加,实现高效的数据保护。在设计作品中,可以对所有用户的密码数据进行加密,对密码会进行隐藏,采用128位固定分组长度,通过一系列操作如字节替代、行移位、列混淆和轮密钥加,实现高效的数据保护。
MD5加密算法:
MD5加密算法,全称为Message-Digest Algorithm 5(消息摘要算法第5版),是一种广泛使用的散列函数或哈希算法,主要用于确保信息传输的完整性和一致性。MD5加密算法主要对各种类型的用户密码数据进行加密隐藏,需要解密才可以看到密码,不然会有32位英文和数字组成。在设计中可对所有新建用户的密码数据进行加密。
SHA-2加密算法:
SHA-2算法是一种高效、安全的散列函数算法标准,名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准。可以对各种类型的用户密码数据进行加密隐藏。在设计中可对所有新建用户的密码数据进行加密。
四、其他算法
随机组卷算法:
随机组卷是一种在教育、考试、测试等场景中广泛使用的技术,旨在从预先准备好的题库中随机选择题目,以生成个性化的试卷。这种方法有助于确保考试的公平性、减少作弊的可能性,并为学生提供多样化的测试体验。通过组卷功能,实现考试(单选,多选,判断,填空,客观题)用户自动提交,倒计时,自动+手动得分,可以高效地实现随机组卷,为考试提供科学、公平、个性化的解决方案。使用场景适用于需要考试等类型的场景。在教育、培训等领域,教师或学习平台可以使用随机组卷算法为学生生成练习题或模拟考试试卷以及知识竞赛、技能竞答等趣味活动。
脱敏算法:
脱敏算法的功能主要体现在对敏感数据的保护上,通过一系列技术手段降低数据敏感度,防止数据泄露和滥用,脱敏算法提供了多种脱敏方式,如随机替换、加密、截断、掩码等,以适应不同场景下的数据脱敏需求。例如,对于身份证号、手机号等敏感信息,可以采用掩码方式隐藏部分信息;对于财务数据,可以采用加密或截断方式保护其机密性。使用场景像名称、手机、身份证、邮箱、银行卡等需要隐藏信息的都可以使用。适用于所有的需要加密,不想显示出来的数据进行加密处理。
五、图像识别功能
人脸识别(百度接口):
登录时的人脸识别,点击按钮进行签到打卡等都可以用到,上传图片跟注册头像比对,超过60%相似度就能匹配成功。使用场景有活动签到、考试签到、定位打卡、登录识别等,属于比较百搭的功能。
屏蔽敏感词:管理员设置了敏感词之后,当用户输入设置的敏感词会自动屏蔽用**代替。适用于所有带评论的场景。
动物识别(百度接口):
根据拍摄照片,识别图片中动物的名称,可配合其它识图能力对识别的结果进一步细化,提升用户体验,广泛应用于拍照识图类APP中。
植物识别(百度接口):
可识别超过2万种常见植物和近8千种花卉,接口返回植物名称和置信度信息,过EasyDL定制图像分类、物体检测模型,自定义识别标签,实现定制植物识别功能。
车牌识别(百度接口):
别中国大陆各类机动车车牌信息,支持蓝牌、黄牌(单双行)、绿牌、大型新能源(黄绿)、领使馆车牌、警牌、武警牌(单双行)、军牌(单双行)、港澳出入境车牌、农用车牌、民航车牌,并能同时识别图像中的多张车牌。
菜品识别(百度接口):
识别超过9千种菜品,适用于识别只含有单个菜品的图片,支持自建菜品图库,适用于识别含有多个菜品的图片,接口返回菜品的名称、位置、相关性等综合信息。
垃圾识别(百度接口):
调用第三方库就能自动识别图中的垃圾。只需上传图片可以识别出这个是属于什么类型的垃圾,什么名称,属于什么类型。
文字识别功能(百度接口):
文字识别是一种精准文字识别的服务高效易用、识别率高、安全可靠。传图片后会自动识别出图片中的文字,图片中文字识别支持中、英、法、俄、西、葡、德、意、日、韩、中英混合等10种语言。(此识别功能是调用百度库)
六、商城常用亮点
支付宝沙箱支付:
对支付进行模拟沙箱支付宝界面进行支付,适用于需要购物,交易这一块,涉及到金额范围内的都可以使用此功能,涉及的范围比较广。
会员等级折扣:
可以享受会员折扣优惠,管理员可以设置好不同等级会员名称跟折扣,给对应用户设定好对应会员就可以享受对应会员折扣,黄金,铂金,钻石,荣耀,不同的等级,不同的折扣。使用场景如非购物车购买,商城,课程,车位,酒店,购票等,需要使用自定义购买等会员功能模块可以使用。
商城优惠卷:
满减券是最常见的一种形式,如“满100元减20元”,这种优惠券可以有效控制活动成本,同时鼓励消费者增加单次购买金额。使用场景有商城、酒店、餐饮、运动、汽车交易、美容院、健身房等等,只要涉及到金额交易的都可以使用。
积分功能:
在商业和日常应用中,积分操作则是激励用户、增强用户粘性、促进消费的有效手段。通过签到或者购买方式获得积分兑换商品。使用场景如商城交易,任务打卡,活动打卡等,属于比较百搭的功能。
客服聊天:
客服聊天通常围绕着为客户提供支持、解答疑问、处理投诉、促进销售或提供产品/服务相关信息等核心目的展开。可以实现和管理在线沟通,可以设置智能回复。
七、其他常用创新亮点
调用摄像头拍照:
调用摄像头拍照的功能是现代设备和应用程序中非常常见的一项特性,它允许用户直接通过设备上的摄像头捕捉图像。这项功能广泛应用于智能手机、笔记本电脑以及网页应用中,为用户提供了便捷、即时的拍照体验。使用场景如需要通过识别登录或者识别打卡操作等,需要识别通过之后才能登录或者提交;还适用于需要拍照、照片、图片展示的场景,或者所有用户头像需要拍照的场景,基本是百搭了。
爬虫功能:
可以对对应网站爬取出对应的数据内容: 本研究将采用Hadoop技术对XXX数据进行爬取和存储,并利用可视化技术对数据进行深入分析和展示。首先爬取XXX网站的数据,用Hadoop的MapReduce框架进行并行数据处理,实现大规模数据的快速获取和存储,其次对爬取的数据进行清洗、去重、格式转换等预处理操作,提高数据质量,并将处理后的数据存储在Hadoop分布式文件系统中。利用Hadoop的Hive数据仓库工具进行数据分析,包括数据聚合、趋势预测等,以提取有价值的信息,利用如Python的Matplotlib、Seaborn等可视化工具,将数据分析结果以图表、仪表板等形式进行展示,以便用户更直观地了解xxx市场情况。
大屏看板:
看板是对爬虫采集的数据量、数据类型和数据来源进行统计分析展示,提供历史数据的趋势分析,帮助用户了解爬虫的长期表现和变化趋势,确保爬虫运行的稳定性和安全性。
课表功能:
程序中的课表功能是一个帮助用户管理日常课程安排的工具,它允许添加、编辑和查看课程信息,可以自动排版,做到一键排序。
联动功能:
可以设置信息联动,一旦选择了第一个选项,那么第二个选项也因第一个选项而进行限制。如班级专业,地域等,对于需要关联的功能可以使用。
竞拍功能:一种价高者得的竞价方式,可以对物品或者商品进行竞价,限制时间竞拍结束后,出价最高的人竞拍成功。适用于项目竞拍,商品拍卖等,对于需要竞价的功能可以使用。
在线阅读功能:
可以进行小说阅读,也可以设置进行购买或者购买会员之后才能进行阅读。使用场景如小说,动漫,文章等,付费开通章节,阅读记录保存 对于类似小说功能可以使用。
批量导入、导出打印功能:
需要用到大量数据导入和导出,基本属于百搭的一个功能。如批量导入成绩信息,资料信息。
考试功能:
可以设置五种考试题型,单选,多选,填空,判断,主观题,设置好对应试卷题目进行考试。客观题可以自动阅卷。使用场景如学习考试、在线测试、驾校、问卷等对需要考试的功能都可以进行使用。
文本翻译:
在外语教学及学习场景中,通过实时句子翻译、单词释义、语音合成等功能,帮助师生沟通、外教课后点评,辅助阅读和写作,全面提升学习效率与质量。
ChatGPT人工智能:
使用于所有需要人工智能的场景。
弹窗提醒:弹窗提醒可在特定时刻弹出窗口提示用户。它能及时传达信息,如软件的通知、任务提醒等。用户可进行交互操作,像确认、取消等。可设置提醒时间、内容,还能选择是否伴有声音等提示,在各类软件和系统中广泛应用。使用场景如需要用到提醒的场景,库存,过期,日期、定时提醒等等
百度智能云千帆AI人工智能:
百度智能云千帆是一个面向企业开发者的一站式大模型开发及服务运行平台,提供多种大模型选择和AI开发工具,助力客户轻松开发大模型应用。适合使用需要解答疑问的场景,接入人工智能,可以回答您的各种问题,适用于需要涉及要人工智能的场景。
论坛管理功能:
在线论坛,也称为网络论坛、电子论坛或BBS(Bulletin Board System,公告板系统)的现代互联网形态,是一种允许用户以文本形式发布信息、交流意见和讨论话题的在线平台。这些平台通常围绕特定的主题或兴趣领域构建,如科技、文化、娱乐、教育、健康、体育等,吸引了大量有着共同兴趣或需求的用户参与。亮点如置顶优质帖子、设置敏感字用****代替、并删除不良帖子。
云服务器部署:
代码可以部署在云服务器里面,页面随时随地可以打开浏览操作,学生可以自己购买腾讯云或华为,阿里云,学生只要几十块可以使用3-6个月,我们可以提供24小时服务器体验,优质客户可以免费使用我们服务器,可直接帮学生部署操作,也可以加100帮客户代码部署到云服务器平台。
时间计算:
时间计算功能是一种实用且广泛应用的工具,也是常见的一种时间计算公式,输入对应开始时间跟结束时间就可以算出天数、时长、秒数等结果。适用于计算复杂的时长,比如汽车出入场时长、电脑上下机时长、图书借阅时长、请假时长等,涉及时间计算。
找回密码功能:
注册的时候用户设置密保问题及答案,在用户忘记密码或密码被盗用等情况下,通过回答之前设置的密保问题来验证身份,从而重新设置密码的功能。
邮箱找回密码:
邮箱找回密码功能是一种常见的用户账户安全措施,旨在帮助用户在其忘记密码时能够重新获取访问权限。通过往用户注册时输入的邮箱发送邮件,用户打开邮件点击链接即可重置密码。
倒计时功能:
倒计时功能是一种在特定时间段内逐渐减少时间显示的功能,广泛应用于各种场景,如倒计时结束某项活动、提醒用户即将发生的事件、控制游戏或竞赛的时间等。用户可以设置好一个时间,时间到了就不能在操作,类似商城限时秒杀,只有在规定时间内才能进行购买。
选座功能:
选座功能是一种通过互联网技术,允许用户在购买服务(如票务、图书馆、电影院、自习室座位等)时自主选择所需位置的功能。
机器人自动回复:
智能机器人自动回复的内容丰富多样,旨在通过自动化、智能化、个性化的方式为用户提供高效、便捷的服务。随着人工智能技术的不断发展,智能机器人自动回复能够在短时间内给出回复,提升工作效率和用户体验。
团购功能:
团购是一种以集体购买的方式,享受集体消费的优惠活动,一个让购物变得简单、快乐、省钱的团购平台,团购的核心优势——即价格优惠、社交互动、以及便捷的购物。类似拼多多满多少人数可以下单,一个用户发布拼团,其他用户可以进行开团享受拼团价格优惠,拼团价格要比正常的价格要低。
数据备份还原:
数据备份还原功能是计算机系统中至关重要的一部分,它确保了数据的安全性和可恢复性,数据可以备份到本地,数据库内容导出进行备份,需要使用在重新导入,数据还原是指将备份的数据或程序恢复到原始系统或指定位置的过程,确保了数据的安全性和可恢复性。
转发分享功能:
分享是一个常见且重要的功能,可以用户将系统中的内容(如文章、图片、视频、链接等)通过发布链接。使用场景如景点、美食食谱、电影、动漫、商品等分享发布到QQ空间或者微博分享给其他人
问卷调查:
问卷调查是一种基于问题的调查方法,它使用一整套预先设计好的问题,以书面形式向被调查者收集信息。这些问题可能包括开放性问题或封闭性问题,如单选或者多选题等,创建问卷跟需答卷的题目,用户可以进行答卷进行记录统计。
限次功能:
用于设置用户操作次数,设定多少次用户就只能操作多少次,超出会提醒无法操作,既能保证系统的稳定性和安全性,又能促进用户合理使用资源。使用场景如投票、购买、预约、报名、申请、考试、问卷,游戏等等场景,用于限制用户恶意操作,只要涉及到跨表的都可以使用。
心理卷类型:
心理测试是用户的测评数据,生成详细的心理健康评估报告。报告包括评估结果、问题分析、建议措施等内容,帮助用户更好地了解自己的心理健康状况,可以通过创建心理测试测试结果进行分析。
地图定位功能:
定位功能,也称为位置服务(LBS, Location-Based Service),通过收集、分析和利用用户的地理位置数据,为用户提供各种便利和实用的功能。引入第三方地图定位功能,类似于微信的定位功能,定位于自己当前位置,可以在地图上点击相应位置后自动生成详细地址。使用场景如充电桩位置、目的地位置、签到地点、景点位置、停车场位置等等,只要涉及到地址的都可以使用,属于百搭型的亮点功能。
天气功能:
天气是为用户提供全面、准确、实时的天气信息服务,展示天气变化过程,帮助用户了解天气变化的趋势。可以引入第三方天气,展示当地的天气,温度,舒适,未来天气的预测(百度,高德,腾讯,可以在地图上查看到不同城市天气信息。
情感分析:
针对通用场景下带有主观描述的中文文本,自动判断该文本的情感极性类别并给出相应的置信度,情感极性分为积极、消极、中性。
随机抽奖功能:
随机抽奖是一种通过随机选择的方式从参与者中抽取获奖者的活动。这种活动通常用于促销、庆典或公益活动,以增加用户参与度和活跃气氛。在随机抽奖中,每个参与者都有机会获得奖品,但具体中奖与否完全取决于运气。组织者通常会设定明确的规则和流程,确保抽奖的公平性和透明性。
八、系统辅助功能
Redis缓存:
Redis 是一个开源、内存中的数据结构存储系统,可用作数据库、缓存和消息中间件。它支持多种数据类型,如字符串、列表、集合等,并提供高性能操作。Redis 具有持久化机制,可将数据保存到磁盘,确保数据的可靠性和持久性。
数据库外键功能:
外键作为保障数据之间正确关联的重要机制,在此过程中起到了至关重要的作用。通过使用外键,开发者能够确保数据在不同表之间的引用是有效且准确的,从而避免数据孤岛现象的出现,并保证数据库的一致性和完整性。
操作日志:
操作日志用于记录系统或应用中的各种操作行为,以便于审计、故障排查、性能分析和安全监控操作,可以对所有用户操作行为进行记录,包括操作时间、操作类型、操作对象、操作结果等,,确保日志数据的安全性。
禁用功能:
禁用是指在某一个平台或应用上注册的用户账号因为违反平台或应用的使用规则而被暂时或永久禁止使用的情况,如用户输入3次错误密码,自动锁定无法登录,由管理员解锁,管理员可以通过锁定来限制用户登录。
手机注册验证码:
需要先开通绑定手机号码,注册的时候输入对应手机号发送验证码,对应手机可以接收到验证码之后输入验证成功才能进行注册。
邮箱注册验证码:
注册的时候需要输入对应邮箱进行发送验证码,发送之后对应邮箱会收到验证码,需要输入正确验证码才能注册成功。
登录身份验证:
网站登录身份验证是确认用户访问网站时身份合法性的过程。通常通过用户名和密码、多因素认证(MFA)、生物识别技术等方法实现。它确保只有授权用户可以访问敏感信息或执行特定操作,防止未经授权的访问和数据泄露,提升网站安全性。
菜单管理:
管理员增加菜单列表管理,点击编辑名称可以修改一二级菜单名称,点击编辑父级可以合并菜单,通过编辑权限可以选择需要的功能按钮权限,可以根据需求使用菜单,每次修改之后重新登录生效。