【数据产品案例】美团点评-点评管家“竞对分析”功能

案例来源:@MR-TOP

1. 背景:竞对分析是美团点评对于商家开放的一项功能

2. 竞对分析指标(包括昨日/7日/30日数据)
1)曝光指数:门店在列表页的曝光情况
2)人气指数:点击进门店的次数
3)交易指数:门店销售额指标

3. 竞对门店的选择的几种方法
1)同类别
2)同商圈
3)品牌性:品牌调性、价格、产品、客户群定位等
4)官方建议:点评官方会根据访客重合度高、曝光重合度高等提出参考建议
(注:选择竞对不要只盯着行业内top的企业,要找一个自己“跳一跳”能够得到的企业做bench)

4. 竞对门店详细对比
1)展示曝光:包括自然曝光与推广曝光,受到以下因素影响
a. 投放价格
b. 投放目标人群
c. 投放物料等因素
2)点击率:影响因素包括
a. 展示物料
b. 门店名称
c. 主图
d. 星级
e. 参考价格
f. 团购项目价格
g. 品牌性等
3)浏览竞对,包括人均浏览时长、技师点击率、点评点击率、人均浏览点评、好评率等。根据这些数据对店铺的展示做优化。

4)购买下单,包括交易指数和购买转化率


——————————————————————————————————
【稻蛙】
在设计B端数据产品的功能时,需要考虑到数据的整个价值创造过程,即数据是通过被商家理解、转化成相应的行为、得到某类指标上的提升 才实现价值创造的。那么这里可以倒过来思考如何设计数据产品:
1. 识别商家最关心的指标,整理归纳
2. 分析商家为了提高这些指标可以进行的行为(即决策空间)
3. 找到一些指标或者表现形式,能帮助商家进行决策(通过信息减少决策空间的复杂程度)
4. 小量测试,看是否能够帮助商家,确定好关键的数据指标后,固化成数据产品,开放给所有商家
下面整理一个美团点评团购设计的案例,有利于理解商家有哪些决策空间
——————————————————————————————————
案例来源:@MR-TOP

1. 目标:设计团购方法,提高到店人次和总销售额

2. 团购设计
1)价格设计
a. 271原则:20%低价爆款,70%现金流产品,10%高价项目塑造品牌
b. 与门店和商圈的消费者能接受的价格范围有关
c. 商圈的整体流量是稳定的,当本店流量达到峰值,难以冲量的时候,可以剔除20%的低价爆款团购
d. 要考虑到浏览转化率
e. 阶梯定价要合理,价格断层不要太大
f. 可以对价格进行逐步提高,将团购产品从引流到正常售价
g. 分时策略:闲时有量,忙时有价
2)产品设计
a. 分析商圈内卖得好的产品形式
b. 分析同品类销量高的产品形式
c. 分析本店购买频次高、好评高的产品
d. 套餐组合:如一个团购内包含ABC或者可选A/B/C,在有限空间提高产品曝光度
f. 跨品类套餐组合:如丽人是一级类目,美发、美甲、美容是二级类目,可以设计跨品类套餐,在各个分类都有曝光
3)其它优惠设计
a. 考虑到与代金券、闪惠的组合
b. 勾选“代金券”搜索时能带来10%左右的流量

3. 团购物料
1)主图
2)标题
3)团购详情
4)补充信息
5)产品介绍
a. 确定自身定位
b. 找到目标人群的真实需求
c. 表达自己与同业竞品的优势
d. 通过效果图、用户好评等打消顾虑
6)商户/品牌介绍:目标是让用户形成品牌印象,增加用户回流,提高长期溢价

4. 运营策略
1)及时破零:销量为0的情况下用户会怀疑团购产品。一般来说,新单三天销量达到峰值,一周内会有搜索的加权
a. 鼓励当日消费用户用美团点评下单,并写评价
b. 主力破零:集中精力打造主力产品,主力破零后能带动其它产品破零
c. 下架后重新包装再上架(在破零失败的情况下)
2)自助立减
3)团购抵用券
4)平台资源:官方活动、团购/闪惠结果页、banner、分类活动、免费试用、天天特价、优选好店等,需要自主报名


  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,让我们开始介绍这个案例。 欺诈检测是金融行业中非常重要的领域。许多金融机构都会使用数据分析来发现和预防欺诈行为。在这个案例中,我们将使用Python进行欺诈检测。 首先,让我们导入需要使用的库。 ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report ``` 接下来,我们将加载数据集并进行一些基本的数据探索。 ```python data = pd.read_csv('creditcard.csv') print(data.head()) print(data.describe()) print(data.info()) ``` 我们可以看到数据集包含了信用卡交易的信息。其中,Class列表示该交易是否被认为是欺诈交易,0表示不是欺诈交易,1表示是欺诈交易。我们可以看到数据集中有284,807条交易记录,其中492条是欺诈交易,占比不到0.2%。 接下来,我们将绘制一个热力图来查看数据集中各列之间的相关性。 ```python corrmat = data.corr() fig = plt.figure(figsize=(12, 9)) sns.heatmap(corrmat, vmax=.8, square=True) plt.show() ``` 我们可以看到数据集中各列之间的相关性并不强。 接下来,我们将进行数据预处理,包括标准化和拆分数据集。 ```python # 标准化数据 from sklearn.preprocessing import StandardScaler data['normalizedAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1)) data = data.drop(['Amount'], axis=1) # 拆分数据集 X = data.iloc[:, :-1] y = data.iloc[:, -1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ``` 接下来,我们将使用逻辑回归模型进行欺诈检测,并输出模型的评估结果。 ```python # 训练模型 lr = LogisticRegression() lr.fit(X_train, y_train) # 预测结果 y_pred = lr.predict(X_test) # 输出评估结果 print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) ``` 最后,我们可以看到模型的准确率为99.9%,召回率为60.8%。这意味着我们的模型能够正确识别大多数欺诈交易,但有一些欺诈交易可能会被错误地分类为非欺诈交易。因此,我们需要继续优化模型,以提高召回率和准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值