【数据产品案例】阿里生意参谋-用户分析


————————————
思考
  1. 电商是流量逻辑,可以看到生意参谋里非常注重流量,不管新客老客都是流量的一部分(我猜测是淘宝中店铺收藏等入口流量很小,绝大部分流量还是来自搜索,只不过商家对老客的排序会较高、老客对商家的认知也会较好,但顾客还是从淘宝来的,不是商家自己的)。考虑线下商铺,它们的流量构成是 线上团购流量、线下商圈流量、老客直达、客带客等,线下商铺并没有一个像淘宝那么垄断的流量分发中心,所以老客是属于自己的,因此线下商铺对老客的关注度更高,特别是成熟期的商铺,老客占比可能超过50%,因此线下门店的数据分析要多考虑下老客的分析,以及对老客的直接营销
  2. 电商中,没有分析就看不到顾客了;线下场景中,商家从门店的日常管理中就能得到许多基本信息。所以电商的顾客分析可能受关注程度更高,线下商铺要考虑如何让商家感知到顾客分析的价值
  3. 行业专用标签的用户画像挺有意思的,做新客营销的时候有利于设计合适的营销活动;对于老客可以看出自己店铺的顾客画像,在新客营销时找到合适的lookalike群体
  4. 纯粹的数字绝对值看不出什么信息(除非在行业浸染很久了),数据的比较更有解读的价值。数据比较包括横向的(和竞品比)和纵向的(和自己往期比,如同期、办过的活动)。同时生意参谋在这里做得比较好的,是对一些指标还做了文字性的分析(如转化率)。考虑到不同商家对数据的解读能力不同,提供文字性描述能让更多商家理解到数据的价值。在充分数据量和开发量的情况下,数据产品追求的是端到端的解决方法,在这之前,通过文字性进行解释也是一个很好的方法
  5. 淘宝电商中注重爆款,所以以爆款为对象的用户分析也是商家关心的点。线下商铺也是有引流的爆款的,对爆款的分析也是一个重要维度(留存转化、带单、回购等)
————————————

一、大促分析
1. 客群沉淀功能:根据时间段,分析新客流入、留存、老客流失,判断活动效果好坏
2. 活动人群画像
1)新客购买特征:入店关键词、购买商品、支付金额、购买商品组合(可用于做好商品搭配,提高客单)
2)新支付买家留存:回访比、回购比、回购商品排行(后续可作为活动主打商品)
3)买家人群画像:基本属性信息、偏好信息(根据行业有所不同)。该信息可用于直通车、钻展的参考

二、日常分析
1. 实时访客:来源渠道、入店页面
2. 下单漏斗图:访客、下单、支付。注意这里在分析的文字部分提供了链接,一方面向其它深入数据分析引流,另一方面可以考虑直接引流到行为(从数据到行为)
3. 流量分析(电商流量=线下人流,所以流量分析也是用户分析的一个部分)
1) 区分流量来源(淘宝搜索、天猫搜索、淘宝首页、淘宝类目、淘外流量、付费流量等)
2) 关心流量、转化、支付总金额
3) 对比同行表现
4) 关心爆款的流量来源(新客/老客,来源渠道)












CASE 1:利用人群分析打爆款
1. 确定产品的目标人群画像:如年龄:25~30岁性别:男消费水平:70~100元主要特性:长裤、修身、小脚、休闲价格:79元
2. 根据人群画像判断市场盘子有多大:生意参谋-市场航行-人群画像,提供筛选买家的流量、购物信息。目标产品的价格区间在75-100,占比19.68%;整个市场盘子有52万,所以目盘子是52*19.68%约11万件
3. 判断市场是否在增长(增长市场,抢增量市场;稳定市场,就必须抢存量市场了):观察访客量,未增长,说明是存量市场。
4. 判断是否有进入的市场空间:TOP卖家占比低,说明品牌垄断性不大,有进入的市场空间
5. 判断爆款的价格区间
6. 竞品分析:根据商品属性和价格区间,找到对标的竞品。分析竞品的流量构成,思考如何竞争(如关键词优化、价格战、广告投放、站外宣传等)【这里有点夸张,阿里可以看竞品的流量构成。不清楚这算不算商铺的隐私数据,感觉像花钱买了一个全图挂】
7. 人群产品匹配度验证(测款):测试目标人群对商品的喜好程度,关注点击率、收藏加购率,然后调整目标人群和定价策略,找到合适的市场空间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值