直接插入排序的基本思想,就是:每次将一个待排序的记录,将其按照关键字大小插入到前面已经排好序的子序列中的适当位置,知道全部记录插入完成为止。
算法的思想,可以参照平时玩纸牌的时候(来源于算法导论的例子),我们拿到第一张牌,本身就是有序的,第二张牌与第一张牌比较下,看大小,决定放在第一张牌的前面还是后面。
如果手里已经有了N张牌,然后取了第N+1张牌,这张牌从最后面与前面的牌进行比较,如果大,则就放在第N张牌后面;如果小,那就继续与第N-1张牌比较,一直找到合适的地方为止。
总的来说,就是循环比较找位置,移动数据来插入。
本人用Java比较多,这里选择用Java进行开发:
无序数组排序如下:
public class InsertSorting{
public static void main(String[] args) {
int[] array = new int[] { 1, 3, 5, 4, 6, 2, 7, 9, 8 };
selectorSort(array);
}
public static void selectorSort(int array[]) {
// 此处从第二个元素开始,因为第一个元素自身肯定是有序的
// 而且外循环肯定是要遍历从第二个元素开始的所有元素
for (int i = 1; i < array.length; i++) {
// 内循环是为了确定插入元素的位置,所以要遍历前面的有序集合
int j = i - 1;
int num = array[i];
for (; j >= 0; j--) {
// 如果元素大于num
if (array[j] > num) {
// 该元素往后挪动一个位置
array[j + 1] = array[j];
} else {
break;
}
}
// 最后在确定的位置上插入数据
array[j + 1] = num;
}
for (int ele : array) {
System.out.print(ele + " ");
}
}
}
代码如上,此种遍历是从后往前开始遍历的,如果想要从后往前遍历,对于内循环稍微做出修改即可。
对于选择排序,注意点如下:
1:外循环从第二个元素开始,因为第一个元素默认有序
2:内循环遍历的过程中,如果遍历的值比元素大,则必须要元素往后移动,为将要插入的数据留下空间;当遇到满足条件的位置时候,内循环结束
算法时间复杂度分析:
对于直接插入排序:通过执行次数来计算复杂度:
1:外循环肯定是要执行N次的
2:内循环执行的次数,如果本身就是有序数列,则内循环每次都只需要执行一次就结束,此时,算法只需要一趟遍历就能完成,最好的复杂度为O(n);如果序列本身是倒序的,比如[9 8 7 6 5 4 3 2 1];内循环执行的过程中,最后一个元素甚至要进行N-1次比较,加上外循环,最终执行次数为N*(N-1)/2;此时复杂度为O(n2);综合来看,平均时间复杂度为O(n2)。
算法空间复杂度分析
因为在元数据以外,不需要辅助空间,我的代码中使用了常数的辅助空间,故空间复杂度为O(1)
稳定性
直接插入排序是稳定的,按照其算法执行逻辑,两个相同的值并不会交换,所以是稳定的,这也是判断算法是否稳定的标准。