MACR因果推荐Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS

该博客探讨了推荐系统中的流行度偏差问题,提出了一种名为MACR的模型无关的纠正方法。通过因果图建模,MACR旨在理解和消除物品流行度对排名分数的直接影响力,以提供更个性化而非热门导向的推荐。文章介绍了如何通过反事实推理在模型训练和测试阶段消除这种影响,并对比了现有去偏算法的几种策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

研究背景

方法介绍

因果图的建立

建模因果效应

消除流行度影响

心得体会

代码


互动和多样性有收益

我之前反复看这篇文章 我觉得起作用的就是 他减掉了 user embedding和item embedding的norm大小的影响

KDD2021 | MACR: 模型无关的纠正推荐系统流行度偏差的因果推理方法

MACR.pdf

推荐系统的总体目标是为用户提供个性化的建议,而不是推荐热门物品,然而正常的训练范式,即拟合一个推荐模型来重建观测到的用户行为数据,会使得训练模型偏向于推荐流行商品,从而导致马太效应,即流行的物品被更频繁地推荐,并变得更加流行。

该论文从一个全新的视角——因果关系的角度来探讨推荐系统中的流行度偏差问题。该文章指出,流行度偏差存在于因果图中物品节点对排名分数的直接影响之中,也就是说物品的内在属性是错误地赋予某些物品过高排名分数的原因。文章认为为了纠正这种偏差,有必要考虑一个反事实的问题,即如果推荐模型只输入物品相关信息,那么它的排名分数将是多少。为此,该论文用因果图来描述推荐过程中的重要因果关系,在模型训练过程中,论文采行多任务学习的方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值