题意:有n个靶子,是平行于x轴的高度不同的线段,给出n个d(高度)、l(左端点)、r(右端点),然后给出w,让在x轴的[0,w]这个区间内射箭,问是否存在一个位置能射中所有靶子。
题解:先按高度排序,然后在[0,w]范围内二分位置,先得到射箭到第一个靶子的左右端点的斜率,然后到第二个靶子的左右端点的斜率,比较斜率范围是否可以重叠,如果不可以就在x轴上左移或右移(改变l或r),否则就缩小斜率范围,继续和下一个靶子比较。最后所有位置都不可以就输出NO。这里用了atan2(y,x)函数,表示从起点到点(x, y)这条线和x正半轴的角度,其实和atan(y/x)效果一样,只不过可以处理x==0时的特殊情况。
#include <stdio.h>
#include <math.h>
#include <algorithm>
using namespace std;
const int N = 5005;
struct Point {
double l, r, d;
}p[N];
double w;
int n;
bool cmp(Point a, Point b) {
return a.d < b.d;
}
int judge(double pos) {
double l = atan2(p[0].d, p[0].l - pos);
double r = atan2(p[0].d, p[0].r - pos);
for (int i = 1; i < n; i++) {
double temp1 = atan2(p[i].d, p[i].l - pos);
double temp2 = atan2(p[i].d, p[i].r - pos);
if (temp2 - l > 1e-8)
return 1;//右移
if (r - temp1 > 1e-8)
return -1;//左移
l = min(l, temp1);//缩小范围
r = max(r, temp2);
}
return 0;
}
int main() {
int t;
scanf("%d", &t);
while (t--) {
scanf("%lf%d", &w, &n);
for (int i = 0; i < n; i++)
scanf("%lf%lf%lf", &p[i].d, &p[i].l, &p[i].r);
sort(p, p + n, cmp);
double l = 0, r = w;
int flag = 0;
while (r - l > 1e-8) {
double mid = (l + r) / 2;
int temp = judge(mid);
if (!temp) {
printf("YES\n");
flag = 1;
break;
}
else if (temp == 1)
l = mid;
else
r = mid;
}
if (!flag)
printf("NO\n");
}
return 0;
}