题目描述
小易觉得高数课太无聊了,决定睡觉。不过他对课上的一些内容挺感兴趣,所以希望老师讲到有趣的地方的时候叫醒他一下。你知道了小易对一堂课每分钟知识点的感兴趣程度,并以分数量化,以及他在这堂课上每分钟是否会睡着,你可以叫醒他一次,这会使得他在接下来的k分钟内保持清醒。你需要选择一种方案最大化小易这堂课听到的知识点分值。
输入描述
第一行n,k, (1 <= n, k <= $10^5$),表示这堂课持续多少分钟,以及叫醒小易一次使他能够保持清醒的时间。
第二行 n个数,$a{1},a{2},..., a{n} (1<= a{i} <= 10^4)$,表示小易对每分钟知识点的感兴趣评分。
第三行 n个数,$t{1}, t{2}, ..., t_{n}$,表示每分钟小易是否清醒,1表示清醒。
输出描述
小易这堂课听到的知识点的最大兴趣值。
6 3 1 3 5 2 5 4 1 1 0 1 0 0 输出 16
暴力求解,导致超时
借鉴他人思想:https://www.nowcoder.com/discuss/93285?type=0&order=3&pos=123&page=1
使用累加和思想来计算:
1、先从左到右计算所有为1的分数累加和left, 然后你计算所有从右到左的为1的分数的累加right,然后计算全部的累加和total
2、遍历所有为0的点,假设sleep[i]为0, left[i-1]为i时刻之前所有的清醒为1的分值累加和, right[i+k] 为i+k-1时刻后面所有为1的分值累加和,total[i+k-1]为i+k-1前所有的分值累加和, total[i-1]为i前所有的分值累加和
3、total[i+k-1] - total[i-1] 即为从i时刻叫醒,清醒k分钟得到的分值,再加上left[i-1] 和 right[i+k],则为整堂课得到的分值
代码:
def leijia_sleep(score, sleep, n, k):
left = [0 for _ in range(n)]
right = [0 for _ in range(n)]
total = [0 for _ in range(n)]
sums = 0
for i in range(n): # 从左到右计算醒着的累计值
if sleep[i] == 1:
sums += score[i]
left[i] = sums
sums = 0
for i in range(n-1, -1, -1): # 从右到左计算醒着的累计值
if sleep[i] == 1:
sums += score[i]
right[i] = sums
sums = 0
for i in range(n): # 计算所有的累计值
sums += score[i]
total[i] = sums
maxs = 0
print(left, right, total)
for i in range(n):
tmp = 0
if sleep[i] == 0:
tmp += 0 if (i-1) < 0 else left[i-1] # 得到 i 前面所以为1的累计值
tmp += 0 if i+k >= n else right[i+k] # 得到 i+k-1后面所有为1的累计值
tmp += total[min(i+k-1, n-1)] - (0 if i-1 < 0 else total[i-1]) # 用所有i+k前面的累计值减去 i前面的累计值,得到i到i+k之间的累计值
if tmp > maxs == 0:
maxs = tmp
print(maxs)