零售业电商标签从0到1的构建方法

本文介绍了D电商如何构建零售行业标签类目体系,通过数据中台策略,包括用户、商家、店铺、商品和营销活动的标签体系,以提升营销效率和用户体验。该体系旨在解决广告维护、精准营销、数据资产利用等问题,通过洞察分析和千人千面推荐,实现数据驱动的决策和商业增长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读:本文手把手教大家构建一套完整的零售行业标签类目体系。

背景

D电商是一家零售电子商务公司,布局了集线上交易、线下物流、金融、社区于一体的生态链路,拥有该细分行业内领先的全品类一站式交易平台。

近年来电商主营业务发展进入瓶颈期,固定的商品展现模式已不能满足市场需求,具体表现在以下几点。

  • 广告位置与营销活动需要大量运营人员维护更新,耗时耗力。

  • 营销缺乏精准画像、数据支撑。营销成本高但利润回报小,中小商家经营困难,营销质量和效率亟待提升。

  • 平台侧沉淀了大量的业务数据,但无法转化为有效资产,为业务和商家带来真正的商业价值。

针对以上问题,D电商公司在CEO带队学习完数据中台相关理念后,迅速制订了建设零售数据中台的战略计划:埋点采集用户行为数据、规范各端数据录入规范,构建一套完整的零售行业标签类目体系,最终作用于数据化运营与千人千面推荐场景中,以实现精准分析下的决策判断,从而增强用户黏性,提升商业转化效率,如图1所示。

cb15a91c49c7e8065daf0c2352f1e1af.png

图1 数据应用场景:数据化运营和千人千面

项目组设计的零售数据中台主要基于通用的数据中台架构,同时加入行业特有的“人—货—场”概念与D电商业务的自有需求,构建了零售业数据资产体系

01

整体数据资产架构

D电商数据资产架构基本遵循数据中台“平台底座资产核心上层应用”的三层通用结构,但在资产层与服务应用层中,具体建设内容具有零售行业特性,如图2所示。

4cc4ffbf86334bfb8c8942d9c96a0da2.png

图2 D电商数据资产架构图

02

前后台标签类目体系架构

零售业电商的后台标签类目体系一般由“消费者(人)”“商家(人)”“店铺(物)”“商品(物)”“营销活动(关系)”等核心对象标签类目体系组成。这些数据资产往往可以通过查询、分析、圈人、推荐等数据服务引擎配置成数据服务接口嵌入现有业务系统中,或直接生成带交互界面的数据应用系统供业务人员或终端用户使用,最终形成前台标签类目体系结构,如图3所示。

6b3c9f6d3526e093e97678aa201ab4bc.png

图3 零售业电商标签类目体系架构图

03

后台标签类目体系设计思路

“消费者(人)”标签类目体系下分为【基础属性】【兴趣偏好】【行为习惯】【地理位置】【资产信用】等5大一级类目,共计200多个标签。

“商家(人)”标签类目体系下分为【基础属性】【平台属性】【商品属性】【经营属性】【交易属性】【舆评属性】【物流属性】【装修属性】【营销属性】【售后服务】等10大一级类目,共计300多个标签。

“店铺(物)”标签类目体系下分为【基础属性】【从属属性】【商品属性】【交易属性】【装修属性】【服务属性】【物流属性】等7大一级类目,共计150多个标签。

“商品(物)”标签类目体系下分为【基础属性】【从属属性】【发布属性】【营销属性】【交易属性】【服务属性】【评论属性】等7大一级类目,共计200多个标签。具体标签设计脱敏示例如下表所示。

表 商品标签设计示例

ee95fdf1f73b5ef265391f51fdf62a20.png

47d002accec85722320ff6966b7faeac.png

“营销活动(关系)”标签类目体系下分为【基础属性】【管理属性】【发布属性】【营销属性】【交易属性】【服务属性】【评论属性】等7大一级类目,共计约150多个标签。

以上标签类目体系组成了零售业电商公司在营销侧的基本数据资产体系,通过合理便捷地使用这些对象标签,可以快速实现营销端的数据创新。

04

前台标签类目体系设计思路

D电商选择从洞察分析和千人千面入手,展开数字营销尝试:一方面解决企业当前最大的营收难题,另一方面营销端天然与数字有关,最容易反应数据质量与数据价值。洞察分析可以细分为商家画像分析、消费者画像分析、商品透视分析、活动效果分析等,因此前台类目分别与“商家(人)”“消费者(人)”“商品(物)”“营销活动(关系)”这几类对象下的相关标签有关。千人千面主要涉及对每一个消费者对象给予精准的个性化推荐结果,因此千人千面的场景会用到“消费者(人)”和“商品(物)”对象的标签子集。

- END -

2f72c40d4c75354ce6b9419a1bf0c353.png

4b2e115e0ffd25ffc473311b400ad331.png

八千里路云和月 | 从零到大数据专家学习路径指南

我在B站读大学,大数据专业

我们在学习Flink的时候,到底在学习什么?

193篇文章暴揍Flink,这个合集你需要关注一下

Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS

Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点

我们在学习Spark的时候,到底在学习什么?

在所有Spark模块中,我愿称SparkSQL为最强!

硬刚Hive | 4万字基础调优面试小总结

数据治理方法论和实践小百科全书

标签体系下的用户画像建设小指南

4万字长文 | ClickHouse基础&实践&调优全视角解析

【面试&个人成长】2021年过半,社招和校招的经验之谈

大数据方向另一个十年开启 |《硬刚系列》第一版完结

我写过的关于成长/面试/职场进阶的文章

当我们在学习Hive的时候在学习什么?「硬刚Hive续集」

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值