Hive/Spark/Flink增量查询Hudi最佳实践一网打尽

b7046be630bc083448698c58284e8b61.png300万字!全网最全大数据学习面试社区等你来!

一、Hive增量查询Hudi表

同步Hive

我们在写数据时,可以配置同步Hive参数,生成对应的Hive表,用来查询Hudi表,具体来说,在写入过程中传递了两个由table name命名的Hive表。例如,如果table name = hudi_tbl,我们得到

hudi_tbl 实现了由 HoodieParquetInputFormat 支持的数据集的读优化视图,从而提供了纯列式数据

hudi_tbl_rt 实现了由 HoodieParquetRealtimeInputFormat 支持的数据集的实时视图,从而提供了基础数据和日志数据的合并视图

上面的两条对比摘自官网,这里解释一下:其中实时视图_rt表只有在MOR表同步Hive元数据时才会有,并且hudi_tbl在表类型为MOR时并且为配置skipROSuffix=true时才为读优化视图,当为false(默认为false)时,读优化视图应该为hudi_tbl_ro,当表类型为COW时,hudi_tbl应该为实时视图,所以官网对这一块解释有一点问题大家注意

增量查询

修改配置hive-site.xml

在Hive SQL白名单里添加hoodie.*,其他均为已存在的配置,还可以根据需要添加其他白名单,如:tez.*|parquet.*|planner.*

hive.security.authorization.sqlstd.confwhitelist.append hoodie.*|mapred.*|hive.*|mapreduce.*|spark.*
设置参数

以表名为hudi_tbl为例

连接Hive connect/Hive Shell

设置该表为增量表

set hoodie.hudi_tbl.consume.mode=INCREMENTAL;

设置增量开始的时间戳(不包含),作用:起到文件级别过滤,减少map数

set hoodie.hudi_tbl.consume.start.timestamp=20211015182330;

设置增量消费的commit次数,默认设置为-1即可,表示增量消费到目前新数据

set hoodie.hudi_tbl.consume.max.commits=-1;

自己根据需要修改commit次数

查询语句

select * from hudi_tbl where `_hoodie_commit_time` > "20211015182330";

因小文件合并机制,在新的commit时间戳的文件中,包含旧数据,因此需要再加where做二次过滤

注:这里的设置设置参数有效范围为connect session
Hudi 0.9.0版本只支持表名参数,不支持数据库限定,这样设置了hudi_tbl为增量表后,所有数据库的该表名的表查询时都为增量查询模式,起始时间等参数为最后一次设定值,在后面的新版本中,添加了数据库限定,如hudi数据库

二、Spark SQL增量查询Hudi表

编程方式(DF+SQL)

先看一下官方文档上Spark SQL增量查询的方式

地址1:https://hudi.apache.org/cn/docs/quick-start-guide#incremental-query
地址2:https://hudi.apache.org/cn/docs/querying_data#incremental-query

它是先通过spark.read中添加增量参数的形式读Hudi表为DF,然后将DF注册成临时表,最后通过Spark SQL查询临时表的形式,实现增量查询的

参数

  • hoodie.datasource.query.type=incremental 查询类型,值为incremental时代表增量查询,默认值snapshot,增量查询时,该参数必填

  • hoodie.datasource.read.begin.instanttime 增量查询开始时间,必填 例如:20221126170009762

  • hoodie.datasource.read.end.instanttime 增量查询结束时间,非必填 例如:20221126170023240

  • hoodie.datasource.read.incr.path.glob  增量查询指定分区路径,非必填 例如 /dt=2022-11/

查询范围 (BEGIN_INSTANTTIME,END_INSTANTTIME],也就是大于开始时间(不包含),小于等于结束时间(包含),如果没有指定结束时间,那么查询大于BEGIN_INSTANTTIME到现在为止最新的数据,如果指定INCR_PATH_GLOB,那么只在指定分区路径下面查询对应的数据

代码示例

import org.apache.hudi.DataSourceReadOptions.{BEGIN_INSTANTTIME, END_INSTANTTIME, INCR_PATH_GLOB, QUERY_TYPE, QUERY_TYPE_INCREMENTAL_OPT_VAL}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.TableIdentifier

val tableName = "test_hudi_incremental"

spark.sql(
  s"""
     |create table $tableName (
     |  id int,
     |  name string,
     |  price double,
     |  ts long,
     |  dt string
     |) using hudi
     | partitioned by (dt)
     | options (
     |  primaryKey = 'id',
     |  preCombineField = 'ts',
     |  type = 'cow'
     | )
     |""".stripMargin)

spark.sql(s"insert into $tableName values (1,'hudi',10,100,'2022-11-25')")
spark.sql(s"insert into $tableName values (2,'hudi',10,100,'2022-11-25')")
spark.sql(s"insert into $tableName values (3,'hudi',10,100,'2022-11-26')")
spark.sql(s"insert into $tableName values (4,'hudi',10,100,'2022-12-26')")
spark.sql(s"insert into $tableName values (5,'hudi',10,100,'2022-12-27')")

val table = spark.sessionState.catalog.getTableMetadata(TableIdentifier(tableName))
val basePath = table.storage.properties("path")

// incrementally query data
val incrementalDF = spark.read.format("hudi").
  option(QUERY_TYPE.key, QUERY_TYPE_INCREMENTAL_OPT_VAL).
  option(BEGIN_INSTANTTIME.key, beginTime).
  option(END_INSTANTTIME.key, endTime).
  option(INCR_PATH_GLOB.key, "/dt=2022-11*/*").
        load(basePath)
//  table(tableName)

incrementalDF.createOrReplaceTempView(s"temp_$tableName")

spark.sql(s"select * from  temp_$tableName").show()
spark.stop()

结果

+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+
|_hoodie_commit_time|_hoodie_commit_seqno|_hoodie_record_key|_hoodie_partition_path|   _hoodie_file_name| id|name|price| ts|        dt|
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+
|  20221126165954300|20221126165954300...|              id:1|         dt=2022-11-25|de99b299-b9de-423...|  1|hudi| 10.0|100|2022-11-25|
|  20221126170009762|20221126170009762...|              id:2|         dt=2022-11-25|de99b299-b9de-423...|  2|hudi| 10.0|100|2022-11-25|
|  20221126170030470|20221126170030470...|              id:5|         dt=2022-12-27|75f8a760-9dc3-452...|  5|hudi| 10.0|100|2022-12-27|
|  20221126170023240|20221126170023240...|              id:4|         dt=2022-12-26|4751225d-4848-4dd...|  4|hudi| 10.0|100|2022-12-26|
|  20221126170017119|20221126170017119...|              id:3|         dt=2022-11-26|2272e513-5516-43f...|  3|hudi| 10.0|100|2022-11-26|
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+

+-----------------+
|      commit_time|
+-----------------+
|20221126170030470|
|20221126170023240|
|20221126170017119|
|20221126170009762|
|20221126165954300|
+-----------------+

20221126170009762
20221126170023240
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+
|_hoodie_commit_time|_hoodie_commit_seqno|_hoodie_record_key|_hoodie_partition_path|   _hoodie_file_name| id|name|price| ts|        dt|
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+
|  20221126170017119|20221126170017119...|              id:3|         dt=2022-11-26|2272e513-5516-43f...|  3|hudi| 10.0|100|2022-11-26|
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+

注释掉INCR_PATH_GLOB,结果

+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+
|_hoodie_commit_time|_hoodie_commit_seqno|_hoodie_record_key|_hoodie_partition_path|   _hoodie_file_name| id|name|price| ts|        dt|
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+
|  20221127155346067|20221127155346067...|              id:4|         dt=2022-12-26|33e7a2ed-ea28-428...|  4|hudi| 10.0|100|2022-12-26|
|  20221127155339981|20221127155339981...|              id:3|         dt=2022-11-26|a5652ae0-942a-425...|  3|hudi| 10.0|100|2022-11-26|
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+

继续注释掉END_INSTANTTIME,结果

20221127161253433
20221127161311831
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+
|_hoodie_commit_time|_hoodie_commit_seqno|_hoodie_record_key|_hoodie_partition_path|   _hoodie_file_name| id|name|price| ts|        dt|
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+
|  20221127161320347|20221127161320347...|              id:5|         dt=2022-12-27|7b389e57-ca44-4aa...|  5|hudi| 10.0|100|2022-12-27|
|  20221127161311831|20221127161311831...|              id:4|         dt=2022-12-26|2707ce02-548a-422...|  4|hudi| 10.0|100|2022-12-26|
|  20221127161304742|20221127161304742...|              id:3|         dt=2022-11-26|264bc4a9-930d-4ec...|  3|hudi| 10.0|100|2022-11-26|
+-------------------+--------------------+------------------+----------------------+--------------------+---+----+-----+---+----------+

可以看到不包含起始时间,包含结束时间

纯SQL方式

一般项目上都采用纯SQL方式进行增量查询,这样比较方便,纯SQL的方式参数和上面讲的参数是一样的,接下来看一下怎么用纯SQL方式实现

建表造数
create table hudi.test_hudi_incremental (
  id int,
  name string,
  price double,
  ts long,
  dt string
) using hudi
 partitioned by (dt)
 options (
  primaryKey = 'id',
  preCombineField = 'ts',
  type = 'cow'
);

insert into hudi.test_hudi_incremental values (1,'a1', 10, 1000, '2022-11-25');
insert into hudi.test_hudi_incremental values (2,'a2', 20, 2000, '2022-11-25');
insert into hudi.test_hudi_incremental values (3,'a3', 30, 3000, '2022-11-26');
insert into hudi.test_hudi_incremental values (4,'a4', 40, 4000, '2022-12-26');
insert into hudi.test_hudi_incremental values (5,'a5', 50, 5000, '2022-12-27');

看一下有哪些commit_time

select distinct(_hoodie_commit_time) from test_hudi_incremental order by _hoodie_commit_time
+----------------------+
| _hoodie_commit_time  |
+----------------------+
| 20221130163618650    |
| 20221130163703640    |
| 20221130163720795    |
| 20221130163726780    |
| 20221130163823274    |
+----------------------+
纯SQL方式(一)

使用Call Procedures:copy_to_temp_viewcopy_to_table,目前这两个命令已经合到master,由scxwhite 苏乘祥贡献,这俩参数差不多,建议使用copy_to_temp_view,因为copy_to_table会先将数据落盘而copy_to_temp_view是创建的临时表,效率会高一点,且数据落盘无意义,后面还要将落盘的表删掉。

支持的参数

  • table

  • query_type

  • view_name

  • begin_instance_time

  • end_instance_time

  • as_of_instant

  • replace

  • global

测试SQL

call copy_to_temp_view(table => 'test_hudi_incremental', query_type => 'incremental', 
view_name => 'temp_incremental', begin_instance_time=> '20221130163703640', end_instance_time => '20221130163726780');

select _hoodie_commit_time, id, name, price, ts, dt from temp_incremental;

结果

+----------------------+-----+-------+--------+-------+-------------+
| _hoodie_commit_time  | id  | name  | price  |  ts   |     dt      |
+----------------------+-----+-------+--------+-------+-------------+
| 20221130163726780    | 4   | a4    | 40.0   | 4000  | 2022-12-26  |
| 20221130163720795    | 3   | a3    | 30.0   | 3000  | 2022-11-26  |
+----------------------+-----+-------+--------+-------+-------------+

可以看到这种方式是可以实现增量查询的,但是需要注意,如果需要修改增量查询的起始时间,那么就需要重复执行copy_to_temp_view,但是因为临时表temp_incremental已经存在,要么新起个表名,要么先删掉,再创建新的,我建议先删掉,通过下面的命令删除

drop view if exists temp_incremental;
纯SQL方式(二)

PR地址:https://github.com/apache/hudi/pull/7182

这个PR同样由scxwhite贡献,目前只支持Spark3.2以上的版本(目前社区未合并)

增量查询SQL

select id, name, price, ts, dt from tableName
[
'hoodie.datasource.query.type'=>'incremental',
'hoodie.datasource.read.begin.instanttime'=>'$instant1',
'hoodie.datasource.read.end.instanttime'=>'$instant2'
]

这种方式,是支持了一种新的语法,在查询SQL后通过在[]添加参数的形式,感兴趣的话可以拉一下代码,自己打包试一下

纯SQL方式(三)

最终的效果如下

select
  /*+
    hoodie_prop(
      'default.h1',
      map('hoodie.datasource.read.begin.instanttime', '20221127083503537', 'hoodie.datasource.read.end.instanttime', '20221127083506081')
    ),
    hoodie_prop(
      'default.h2',
      map('hoodie.datasource.read.begin.instanttime', '20221127083508715', 'hoodie.datasource.read.end.instanttime', '20221127083511803')
    )
  */
  id, name, price, ts
from (
  select id, name, price, ts
  from default.h1
  union all
  select id, name, price, ts
  from default.h2
)

是在hint中添加增量查询相关的参数,先指定表名再写参数,但是文章好像未给出完整的代码地址,大家有时间可以自己试一下

纯SQL方式(四)

这种方式,是我按照Hive增量查询Hudi的方式修改的源码,通过set的方式实现增量查询

PR地址:https://github.com/apache/hudi/pull/7339

我们已经知道Hudi的DefaultSource.createRelation中的optParams参数为readDataSourceTable中的options = table.storage.properties ++ pathOption,也就是表本身属性中的配置参数+path,之后在createRelation并没有接收其他参数,所以不能通过set参数的形式进行查询

和Hive增量查询一样,指定具体表名的增量查询参数

set hoodie.test_hudi_incremental.datasource.query.type=incremental
set hoodie.test_hudi_incremental.datasource.read.begin.instanttime=20221130163703640;
select _hoodie_commit_time, id, name, price, ts, dt from test_hudi_incremental;
+----------------------+-----+-------+--------+-------+-------------+
| _hoodie_commit_time  | id  | name  | price  |  ts   |     dt      |
+----------------------+-----+-------+--------+-------+-------------+
| 20221130163823274    | 5   | a5    | 50.0   | 5000  | 2022-12-27  |
| 20221130163726780    | 4   | a4    | 40.0   | 4000  | 2022-12-26  |
| 20221130163720795    | 3   | a3    | 30.0   | 3000  | 2022-11-26  |
+----------------------+-----+-------+--------+-------+-------------+

如果不同的库下面有相同的表名,则可以通过库名.表名的形式

## 需要先开启使用数据库名称限定表名的配置,开启后上面不加库名的配置就失效了
set hoodie.query.use.database = true;
set hoodie.hudi.test_hudi_incremental.datasource.query.type=incremental;
set hoodie.hudi.test_hudi_incremental.datasource.read.begin.instanttime=20221130163703640;
set hoodie.hudi.test_hudi_incremental.datasource.read.end.instanttime=20221130163726780;
set hoodie.hudi.test_hudi_incremental.datasource.read.incr.path.glob=/dt=2022-11*/*;
refresh table test_hudi_incremental;
select _hoodie_commit_time, id, name, price, ts, dt from test_hudi_incremental;
+----------------------+-----+-------+--------+-------+-------------+
| _hoodie_commit_time  | id  | name  | price  |  ts   |     dt      |
+----------------------+-----+-------+--------+-------+-------------+
| 20221130163720795    | 3   | a3    | 30.0   | 3000  | 2022-11-26  |
+----------------------+-----+-------+--------+-------+-------------+

大家可以自己试一下,不同的库表关联的情形

这里需要注意一点,更新参数后,需要先refresh table,再查询,否则查询时修改的参数不生效,因为会使用缓存中的参数

这种方式只是简单地修改了一下源码,使set的参数对查询生效

为了避免有些读者嫌打包麻烦,这里给大家提供了hudi-spark3.1-bundle_2.12-0.13.0-SNAPSHOT.jar的下载地址:https://download.csdn.net/download/dkl12/87221476

三、Flink SQL增量查询Hudi表

官网文档

地址:https://hudi.apache.org/cn/docs/querying_data#incremental-query

参数

  • read.start-commit 增量查询开始时间 对于流读,如果不指定该值,默认取最新的instantTime,也就是流读默认从最新的instantTime开始读(包含最新的)。对于批读,如果不指定该参数,只指定read.end-commit,则实现时间旅行的功能,可查询历史记录

  • read.end-commit 增量查询结束时间 不指定该参数则默认读取到最新的记录,该参数一般只适用于批读,因为流读一般的需求是查询所有的增量数据

  • read.streaming.enabled 是否流读 默认false

  • read.streaming.check-interval  流读的检查时间间隔,单位秒(s),默认值60,也就是一分钟

查询范围 [BEGIN_INSTANTTIME,END_INSTANTTIME],既包含开始时间又包含结束时间,对于默认值可参考上面的参数说明

版本

建表造数:
  • Hudi 0.9.0

  • Spark 2.4.5

我这里建表造数使用Hudi Spark SQL 0.9.0,目的是为了模拟项目上用Java Client和Spark SQL创建的Hudi表,以验证Hudi Flink SQL增量查询时是否兼容旧版本的Hudi表(大家没有这种需求的,可以使用任何方式正常造数)

查询
  • Hudi 0.13.0-SNAPSHOT

  • Flink 1.14.3 (增量查询)

  • Spark 3.1.2 (主要是为了使用Call Procedures命令查看commit信息)

建表造数

-- Spark SQL Hudi 0.9.0
create table hudi.test_flink_incremental (
  id int,
  name string,
  price double,
  ts long,
  dt string
) using hudi
 partitioned by (dt)
 options (
  primaryKey = 'id',
  preCombineField = 'ts',
  type = 'cow'
);

insert into hudi.test_flink_incremental values (1,'a1', 10, 1000, '2022-11-25');
insert into hudi.test_flink_incremental values (2,'a2', 20, 2000, '2022-11-25');
update hudi.test_flink_incremental set name='hudi2_update' where id = 2;
insert into hudi.test_flink_incremental values (3,'a3', 30, 3000, '2022-11-26');
insert into hudi.test_flink_incremental values (4,'a4', 40, 4000, '2022-12-26');

用show_commits看一下有哪些commits(这里查询用的是Hudi的master,因为show_commits是在0.11.0版本开始支持的,也可以通过使用hadoop命令查看.hoodie文件夹下的.commit文件)

call show_commits(table => 'hudi.test_flink_incremental');
20221205152736
20221205152723
20221205152712
20221205152702
20221205152650

Flink SQL创建Hudi内存表

CREATE TABLE test_flink_incremental (
  id int PRIMARY KEY NOT ENFORCED,
  name VARCHAR(10),
  price double,
  ts bigint,
  dt VARCHAR(10)
)
PARTITIONED BY (dt)
WITH (
  'connector' = 'hudi',
  'path' = 'hdfs://cluster1/warehouse/tablespace/managed/hive/hudi.db/test_flink_incremental'
);

建表时不指定增量查询相关的参数,我们在查询时动态指定,这样比较灵活。 动态指定参数方法,在查询语句后面加上如下形式的语句

/*+ 
options(
  'read.start-commit' = '20221205152723',
  'read.end-commit'='20221205152736'
) 
*/

批读

Flink SQL读Hudi有两种模式:批读和流读。默认批读,先看一下批读的增量查询

验证是否包含起始时间和默认结束时间
select * from test_flink_incremental 
/*+ 
options(
    'read.start-commit' = '20221205152723' --起始时间对应id=3的记录
) 
*/

结果包含起始时间,不指定结束时间默认读到最新的数据

id   name     price        ts                 dt
 4     a4      40.0      4000      dt=2022-12-26
 3     a3      30.0      3000      dt=2022-11-26
验证是否包含结束时间
select * from test_flink_incremental 
/*+ 
options(
    'read.start-commit' = '20221205152712',  --起始时间对应id=2的记录
    'read.end-commit'='20221205152723'       --结束时间对应id=3的记录
) 
*/

结果包含结束时间

id           name        price       ts                 dt
 3             a3        30.0      3000      dt=2022-11-26
 2   hudi2_update        20.0      2000      dt=2022-11-25
验证默认开始时间

这种情况是指定结束时间,但不指定开始时间,如果都不指定,则读表所有的最新版本的记录

select * from test_flink_incremental 
/*+ 
options(
    'read.end-commit'='20221205152712'       --结束时间对应id=2的更新记录
) 
*/

结果:只查询end-commit对应的记录

id           name        price       ts                 dt
 2   hudi2_update        20.0      2000      dt=2022-11-25
时间旅行(查询历史记录)

验证是否可以查询历史记录,我们更新id为2的name,更新前name为a2,更新后为hudi2_update,我们验证一下,是否可以通过FlinkSQL查询Hudi历史记录,预期结果查出id=2,name=a2

select * from test_flink_incremental 
/*+ 
options(
    'read.end-commit'='20221205152702'       --结束时间对应id=2的历史记录
) 
*/

结果:可以正确查询历史记录

id           name        price       ts                 dt
 2             a2        20.0      2000      dt=2022-11-25

流读

开启流读的参数

read.streaming.enabled = true

流读不需要设置结束时间,因为一般的需求是读所有的增量数据,我们只需要验证开始时间就好了

验证默认开始时间
select * from test_flink_incremental 
/*+ 
options(
    'read.streaming.enabled'='true',
    'read.streaming.check-interval' = '4'
) 
*/

结果:从最新的instantTime开始增量读取,也就是默认的read.start-commit为最新的instantTime

id   name     price        ts                 dt
 4     a4      40.0      4000      dt=2022-12-26
验证指定开始时间
select * from test_flink_incremental 
/*+ 
options(
    'read.streaming.enabled'='true',
    'read.streaming.check-interval' = '4',
    'read.start-commit' = '20221205152712'
) 
*/

结果

id           name        price       ts                 dt
 2   hudi2_update        20.0      2000      dt=2022-11-25
 3             a3        30.0      3000      dt=2022-11-26
 4             a4        40.0      4000      dt=2022-11-26

如果想第一次查询全部的历史数据,可以将start-commit设置的早一点,比如设置到去年:'read.start-commit' = '20211205152712'

select * from test_flink_incremental 
/*+ 
options(
    'read.streaming.enabled'='true',
    'read.streaming.check-interval' = '4',
    'read.start-commit' = '20211205152712'
) 
*/
id           name        price       ts                 dt
 1             a1        10.0      1000      dt=2022-11-25
 2   hudi2_update        20.0      2000      dt=2022-11-25
 3             a3        30.0      3000      dt=2022-11-26
 4             a4        40.0      4000      dt=2022-11-26
验证流读的连续性

验证新的增量数据进来,是否可以持续消费Hudi增量数据,验证数据的准确一致性,为了方便验证,我可以使用Flink SQL增量流读Hudi表然后Sink到MySQL表中,最后通过读取MySQL表中的数据验证数据的准确性

Flink SQL读写MySQL需要配置jar包,将flink-connector-jdbc_2.12-1.14.3.jar放到lib下即可,下载地址:https://repo1.maven.org/maven2/org/apache/flink/flink-connector-jdbc_2.12/1.14.3/flink-connector-jdbc_2.12-1.14.3.jar

先在MySQL中创建一张Sink表

-- MySQL
CREATE TABLE `test_sink` (
  `id` int(11),
  `name` text DEFAULT NULL,
  `price` int(11),
  `ts` int(11),
  `dt`  text DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Flink中创建对应的sink表

create table test_sink (
  id int,
  name string,
  price double,
  ts bigint,
  dt string
) with (
 'connector' = 'jdbc',
 'url' = 'jdbc:mysql://192.468.44.128:3306/hudi?useSSL=false&useUnicode=true&characterEncoding=UTF-8&characterSetResults=UTF-8',
 'username' = 'root',
 'password' = 'root-123',
 'table-name' = 'test_sink',
 'sink.buffer-flush.max-rows' = '1'
);

然后流式增量读取Hudi表Sink Mysql

insert into test_sink
select * from test_flink_incremental 
/*+ 
options(
    'read.streaming.enabled'='true',
    'read.streaming.check-interval' = '4',
    'read.start-commit' = '20221205152712'
) 
*/

这样会起一个长任务,一直处于running状态,我们可以在yarn-session界面上验证这一点

9f28f30cf51ba36d94317baba84356d1.png

然后先在MySQL中验证一下历史数据的准确性

76cff8822c5fb455893653f05b39b86c.png

再利用Spark SQL往source表插入两条数据

-- Spark SQL
insert into hudi.test_flink_incremental values (5,'a5', 50, 5000, '2022-12-07');
insert into hudi.test_flink_incremental values (6,'a6', 60, 6000, '2022-12-07');

我们增量读取的间隔设置的4s,成功插入数据等待4s后,再在MySQL表中验证一下数据

4c042b9abf240c031c86f427545e0e01.png

发现新增的数据已经成功Sink到MySQL中了,并且数据没有重复

最后验证一下更新的增量数据,Spark SQL更新Hudi source表

-- Spark SQL
update hudi.test_flink_incremental set name='hudi5_update' where id = 5;

继续验证结果

673daee5d9f0b909e9c23bba2855a9be.png

结果是更新的增量数据也会insert到MySQL中的sink表,但是不会更新原来的数据

那如果想实现更新的效果呢?我们需要在MySQL和Flink的sink表中加上主键字段,两者缺一不可,如下

-- MySQL
CREATE TABLE `test_sink` (
  `id` int(11),
  `name` text DEFAULT NULL,
  `price` int(11),
  `ts` int(11),
  `dt`  text DEFAULT NULL,
   PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
-- Flink SQL
create table test_sink (
  id int PRIMARY KEY NOT ENFORCED,
  name string,
  price double,
  ts bigint,
  dt string
) with (
 'connector' = 'jdbc',
 'url' = 'jdbc:mysql://192.468.44.128:3306/hudi?useSSL=false&useUnicode=true&characterEncoding=UTF-8&characterSetResults=UTF-8',
 'username' = 'root',
 'password' = 'root-123',
 'table-name' = 'test_sink',
 'sink.buffer-flush.max-rows' = '1'
);

将刚才起的长任务关掉,重新执行刚才的insert语句,先跑一下历史数据,最后再验证一下增量效果

-- Spark SQL
update hudi.test_flink_incremental set name='hudi6_update' where id = 6;
insert into hudi.test_flink_incremental values (7,'a7', 70, 7000, '2022-12-07');

可以看到,达到了预期效果,对于id=6的执行更新操作,对于id=7的执行插入操作

99d5a91a9cc7870dfdb70cfdf510fc7c.png

如果这个文章对你有帮助,不要忘记 「在看」 「点赞」 「收藏」 三连啊喂!

682d7e78d3f1a794df6c7fd68706aedc.png

2f48d598d76e933b9fe69dbc28e57d65.jpeg

2022年全网首发|大数据专家级技能模型与学习指南(胜天半子篇)

互联网最坏的时代可能真的来了

我在B站读大学,大数据专业

我们在学习Flink的时候,到底在学习什么?

193篇文章暴揍Flink,这个合集你需要关注一下

Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS

Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点

我们在学习Spark的时候,到底在学习什么?

在所有Spark模块中,我愿称SparkSQL为最强!

硬刚Hive | 4万字基础调优面试小总结

数据治理方法论和实践小百科全书

标签体系下的用户画像建设小指南

4万字长文 | ClickHouse基础&实践&调优全视角解析

【面试&个人成长】2021年过半,社招和校招的经验之谈

大数据方向另一个十年开启 |《硬刚系列》第一版完结

我写过的关于成长/面试/职场进阶的文章

当我们在学习Hive的时候在学习什么?「硬刚Hive续集」

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值