已经更新100+篇~
关注公众号,BAT大神带你飞~
听说你还在写Java,看Spring,看Dubbo,今天SpringCloud, 明天Dubbo3.X新版本…
10个开发9个半在写Java后台?框架层出不穷,天天学新东西怕被甩淘汰︿( ̄︶ ̄)︿
本文旨在为普通程序员(Java程序员最佳)提供一个入门级别的大数据技术学习路径,如果你有java的基础,不想像大多数javaer一样面对成千上万的Javaer开发竞争者,我推荐你转大数据开发~
大数据成神之路目录
大数据开发基础
Java基础 | NIO | 并发 | JVM | 分布式 | Zookeeper | RPC | Netty |
---|---|---|---|---|---|---|---|
Java基础 | NIO | 并发容器 | JVM | 分布式 | zookeeper | RPC | Netty |
公众号
-
全网唯一一个从0开始帮助Java开发者转做大数据领域的公众号~
-
公众号大数据技术与架构或者搜索import_bigdata关注,大数据学习路线最新更新,已经有很多小伙伴加入了~
Java基础
- 大数据成神之路-Java高级特性增强(多线程)
- 大数据成神之路-Java高级特性增强(Synchronized关键字)
- 大数据成神之路-Java高级特性增强(volatile关键字)
- 大数据成神之路-Java高级特性增强(锁)
- 大数据成神之路-Java高级特性增强(ArrayList/Vector)
- 大数据成神之路-Java高级特性增强(LinkedList)
- 大数据成神之路-Java高级特性增强(HashMap)
- 大数据成神之路-Java高级特性增强(HashSet)
- 大数据成神之路-Java高级特性增强(LinkedHashMap)
NIO基础
- 大数据成神之路-Java高级特性增强-NIO大纲
- NIO概览
- Java NIO之Buffer(缓冲区)
- Java NIO之Channel(通道)
- ava NIO之Selector(选择器)
- Java NIO之拥抱Path和Files
Java并发容器
- 大数据成神之路-Java高级特性增强(并发容器大纲)
- 大数据成神之路-Java高级特性增强(LinkedBlockingQueue)
- 大数据成神之路-Java高级特性增强(LinkedBlockingDeque)
- 大数据成神之路-Java高级特性增强(CopyOnWriteArraySet)
- 大数据成神之路-Java高级特性增强(CopyOnWriteArrayList)
- 大数据成神之路-Java高级特性增强(ConcurrentSkipListSet)
- 大数据成神之路-Java高级特性增强(ConcurrentSkipListMap)
- 大数据成神之路-Java高级特性增强(ConcurrentLinkedQueue)
- 大数据成神之路-Java高级特性增强(ConcurrentHashMap)
- 大数据成神之路-Java高级特性增强(ArrayBlockingQueue)
JVM深度解析和面试点
先来10篇基础热身
再来5篇详细解说
分布式理论基础和原理
- 分布式系统的一些基本概念
- 分布式系统理论基础一: 一致性、2PC和3PC
- 分布式系统理论基础二-CAP
- 分布式系统理论基础三-时间、时钟和事件顺序
- 分布式系统理论进阶 - Paxos
- 分布式系统理论进阶 - Raft、Zab
- 分布式系统理论进阶:选举、多数派和租约
- 分布式锁的解决方案
- 分布式锁的解决方案(二)
- 分布式事务的解决方案
- 分布式ID生成器解决方案
大数据框架开发基础-Zookeeper
大数据框架开发基础-RPC
大数据框架基石之网路通信-Netty
- 关于Netty我们都需要知道什么
- Netty源码解析-概述篇
- Netty源码解析1-Buffer
- Netty源码解析2-Reactor
- Netty源码解析3-Pipeline
- Netty源码解析4-Handler综述
- Netty源码解析5-ChannelHandler
- Netty源码解析6-ChannelHandler实例之LoggingHandler
- Netty源码解析7-ChannelHandler实例之TimeoutHandler
- Netty源码解析8-ChannelHandler实例之CodecHandler
- Netty源码解析9-ChannelHandler实例之MessageToByteEncoder
- [Hadoop三驾马车之Mapreduce]
- [Hadoop三驾马车之HDFS]
- [Hadoop三驾马车之Yarn]
- [OLAP引擎-HiveSQL的高级调优和原理分析]
- [离线列式大数据存储-Hbase的原理和亿级数据下的生产应用]
- [Nosql之王-Redis高级特性和实现原理]
- [分布式消息队列Kafka原理及与流式计算的集成]
- [Spark的原理和生产应用(一)]
- [Spark的原理和生产应用(二)]
- [Spark的原理和生产应用(三)]
- [Flink当前最火的实时计算引擎(一)]
- [Flink当前最火的实时计算引擎(二)]
- [Flink当前最火的实时计算引擎(三)]
- [大数据算法(一)]
- [大数据算法(二)]
本系列的大纲会根据实际情况进行调整,欢迎大家关注~