凸优化与对偶问题

本文深入探讨了凸优化的概念,它是优化理论中的一个重要分支,主要研究如何找到函数的全局最小值。文章阐述了凸函数的性质,以及在解决实际问题中如何利用这些性质来简化优化过程。同时,介绍了对偶问题,说明了原问题与对偶问题之间的关系,以及如何通过对偶问题求解原问题。通过对拉格朗日乘数法的解释,读者将能够理解如何在约束条件下进行优化,并掌握如何运用对偶理论解决实际工程和数学问题。
摘要由CSDN通过智能技术生成

这个是凸优化的最基本的形式:
$$\begin{align}&\operatorname{minimize}&&f_0(x)\\&\operatorname{subject\;to}&&f_i(x)\leq0,\quad i=1,\dots,m\\&&&h_i(x)=0,\quad i=1,\dots,p\end{align}$$


其中f0为目标函数,第二行与第三行均为约束条件。从f0到fm均为凸函数,而函数h为仿射函数(即线性函数,因此既是凸函数,又是凹函数)。
用$p^\ast$表示最优解,则有$f_{0}(p^\ast)\leq f_{0}(x)$,在约束条件下求极值需要转化为无约束条件下的优化问题,即拉格朗日函数:
$$ L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x)$$
 其中$\small \lambda \geq0 $。显然函数L在极值点,对$x,\lambda,\nu$的偏导数均为0。也就是说,函数L的极值点,必定也是函数f0 的极值点,且满足原问题的约束条件。
可是很多时候原问题并不是凸的,直接求解比较困难,就需要把问题转化一下。在这之前先要介绍一下对偶问题。


对偶问题的弱对偶性和凹性
------------
考虑这个矩阵A,
$$A=\begin{bmatrix}5&5&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值