这个是凸优化的最基本的形式:
$$\begin{align}&\operatorname{minimize}&&f_0(x)\\&\operatorname{subject\;to}&&f_i(x)\leq0,\quad i=1,\dots,m\\&&&h_i(x)=0,\quad i=1,\dots,p\end{align}$$
其中f0为目标函数,第二行与第三行均为约束条件。从f0到fm均为凸函数,而函数h为仿射函数(即线性函数,因此既是凸函数,又是凹函数)。
用$p^\ast$表示最优解,则有$f_{0}(p^\ast)\leq f_{0}(x)$,在约束条件下求极值需要转化为无约束条件下的优化问题,即拉格朗日函数:
$$ L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x)$$
其中$\small \lambda \geq0 $。显然函数L在极值点,对$x,\lambda,\nu$的偏导数均为0。也就是说,函数L的极值点,必定也是函数f0 的极值点,且满足原问题的约束条件。
可是很多时候原问题并不是凸的,直接求解比较困难,就需要把问题转化一下。在这之前先要介绍一下对偶问题。
对偶问题的弱对偶性和凹性
------------
考虑这个矩阵A,
$$A=\begin{bmatrix}5&5&